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Most Electron Heat Transport Is Not Anomalous;
It’s A Paleoclassical Process In Toroidal Plasmas
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Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is
shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction
and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along mag-
netic field lines a long length L (>> periodicity length πR0q), which is the minimum of the electron
collision length and an effective field line length. Thus, diffusing field lines induce a radial electron
heat diffusivity M ≡ L/(πR0q) ∼ 10 >> 1 times the magnetic field diffusivity η/µ0 ' νe(c/ωp)2.

PACS numbers: 52.25.Fi, 52.35.Vd, 52.55.Dy, 52.55.Fa

For more than three decades the outstanding and per-
vasive mystery in pursuit of magnetic fusion has been
[1–4]: what causes “radial” (across magnetic field lines)
electron heat transport in magnetically-confined toroidal
plasmas such as tokamaks. Because the experimentally-
inferred electron heat transport exceeds the theoretical
classical [5] (gyromotion-induced) and neoclassical [5]
(drift-orbit-induced) collisional transport by factors of
about 104 and 102, respectively, it is called “anomalous.”
Since this is often the dominant radial transport process,
resolving this conundrum is very important both for un-
derstanding plasma confinement in present experiments
and for developing accurate plasma performance predic-
tions for the planned International Thermonuclear Ex-
perimental Reactor (ITER) [6].

Salient properties of radial electron heat transport ob-
served in tokamak plasmas over the past three decades
are [1–4]: 1) The experimentally-inferred effective radial
electron heat diffusivity χe is of order 2 m2/s (to within a
factor of 10) in a wide variety of tokamak plasmas. 2) The
inferred χe is typically 3–30 times the magnetic field dif-
fusivity η/µ0. 3) The χe usually increases from the hot
plasma core toward the cooler edge. 4) Tokamak plas-
mas heat up to the “low collisionality,” banana-plateau
regime [5]. 5) In high density ohmically-heated plasmas
χe is inversely proportional to the electron density (so-
called Alcator scaling [7]). Some mysterious properties
are: 6) The χe can be up to an order of magnitude smaller
in the vicinity of low order rational surfaces [8], and “in-
ternal transport barriers” often form there [9, 10]. 7) The
χe can also be smaller just inside a magnetic separatrix
at the plasma edge [10]. This paper provides a new model
for all these characteristics of radial electron heat trans-
port based on the dominant Coulomb collision processes
in low-collisionality toroidal plasmas.

The shortest time scale, most primitive and domi-
nant Coulomb-collision-induced transport processes in
magnetically-confined plasmas will be called paleoclas-
sical processes. They occur on the electron collision time
scale 1/νe. The dominant transport processes are paral-
lel electron heat conduction and magnetic field diffusion.

[Classical and neoclassical diffusion [5] develop on the
same time scale but are smaller than the magnetic field
diffusivity for most low electron pressure plasmas.]

On the 1/νe time scale, electron heat conduction equi-
librates the electron temperature over parallel (to the
magnetic field B) distances of order the electron colli-
sion length λe ≡ vTe/νe in which vTe ≡ (2Te/me)1/2.
Magnetic field diffusion [see (7) below] is induced by the
plasma resistivity η. It causes magnetic field lines to
diffuse perpendicular to B with a diffusion coefficient
Dη ' η0/µ0 ≡ νe(c/ωp)2 ∼ (∆x)2/∆t, which implies a
diffusive radial step ∆x ' δe ≡ c/ωp [the electromagnetic
(em) skin depth, in which ωp ≡ (nee2/meε0)1/2 is the
electron plasma frequency] in a collision time ∆t ' 1/νe.
Thus, paleoclassical processes equilibrate Te over a colli-
sion length λe (∼ 200 m) along a field line that is diffusing
radially about c/ωp (∼ 1 mm) — all in a collision time
1/νe (typically ∼ 10 µs). The parallel equilibration can
be limited by the finite length of rational magnetic field
lines in toroidal magnetic systems and by the parallel
length over which field lines are diffusing.

In axisymmetric toroidal magnetic confinement sys-
tems the helical field lines form nested toroidal surfaces
called magnetic flux surfaces. The “winding number”
of field lines in tokamaks is defined by a “safety factor”
(for kink stability) q(r) in which r is the (cylindrical-like)
radial label of the flux surface; it typically ranges from
order unity in the plasma core to >∼ 3 at the edge. Flux
surfaces are rational or irrational depending on whether
or not q is the ratio of integers (m,n):

q(r)
{

= m/n, rational surface,
6= m/n, irrational surface. (1)

The irrational surfaces form a dense set while the rational
surfaces are radially isolated from each other.

Rational surfaces are of interest because their helical
magnetic field lines close on themselves after m toroidal
(or n poloidal) transits. The length of such field lines on
a q(r∗) = q∗ ≡ m/n rational surface in a large aspect
ratio (ε ≡ r/R0 << 1) tokamak is 2 `∗ ' 2πR0m ≡
2πR0q∗n, in which R0 is the major radius of the torus.
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Magnetic field lines diffuse for radial distances x off a
rational surface greater than the em skin depth (|x| > δe),
but aren’t created and don’t diffuse for |x| < δe — see
(7) below. In a sheared magnetic field the half-length `δ
along B [see (6) below] over which field lines are diffusing
is obtained [11] from 1 > kx(`)δe with kx = kθ`/LS , kθ ≡
nq/r and 1/LS ' rq′/R0q

2: `δ ≡ LS/(kθδe). Setting
`∗ = `δ determines a maximum n (typically >∼ 10) for
field lines diffusing radially over their entire length:

nmax =
1√
πδeq′

, δe ≡
c

ωp
, q′ ≡

∣∣∣∣dqdr
∣∣∣∣
r∗

. (2)

The length of such rational helical field lines is

2 `max ' 2πR0q∗nmax, maximum field line length. (3)

However, in the vicinity of a low order rational surface
q◦ ≡ m◦/n◦ (e.g., 3/2), the relevant n is n◦ and the field
line length is short (2 `n◦ ' 2πR0q

◦ n◦).
The effective radial electron heat diffusivity χe can now

be estimated phenomenologically. As a magnetic field
line diffuses radially it carries with it the electron heat
“contained” on the field line. The half-length L over
which the electron temperature is equilibrated is

L = min { `max, λe, `n◦}, equilibration length. (4)

Because L is longer than the poloidal periodicity half-
length of magnetic field lines (πR0q), the paleoclassical
(superscript pc) electron heat diffusivity is a multiple M
larger than the magnetic field diffusivity in a torus:

χpc
e ∼ M

η

µ0
, M ≡ L

πR0q
, (5)

which, except for constants, is this paper’s main result.
To be more precise, the effects of paleoclassical pro-

cesses in the vicinity of a medium order (1 < n ≤
nmax ∼ 10) rational helical field line need to be quan-
tified. Because the relevant properties of field lines are
their poloidal and toroidal periodicities, the magnetic
field curvature and torsion can be neglected. However,
magnetic shear is important. Thus, a simple “sheared
slab” model can be used to represent the magnetic field
in the vicinity of a helical field line on a rational surface:

B = B0[êz + (x/LS)êy] = B0êz + êz×∇ψ. (6)

(A companion, more detailed paper [11] uses axisymmet-
ric toroidal geometry magnetic flux coordinates.) Here,
B0 = constant is the magnetic field strength, êz ≡ ∇z
is a unit vector along the rational field line, and ψ ≡
B0x

2/2LS is the magnetic flux function associated with
the (small) magnetic shear. For a large aspect ratio toka-
mak the shear length is LS ' R0q/s with s ≡ rq′/q.
Magnetic shear is caused by a (parallel) current flow-
ing in the plasma: J = ∇×B/µ0 = êz∇2ψ/µ0 =

êzB0/(µ0LS) ≡ Jzêz. The preceding properties are eval-
uated on the rational surface where x ≡ r − r∗ vanishes.

The relevant magnetic field evolution equation can be
obtained from Faraday’s law together with a plasma
Ohm’s law of E = −V×B + ηJ + (me/nee

2) dJ/dt,
which includes electron inertia: ∂B/∂t = −∇×E =
∇×(V×B) − ∇×(ηJ + µ0δ

2
edJ/dt) in which d/dt ≡

∂/∂t + V·∇. Using the pre-Maxwell Ampere’s law
∇×B = µ0J and the fact that for the B in (6) ∂B/∂t =
−∇×(∂ψ/∂t)êz, setting the coefficient of the êz compo-
nent inside the curl in the resultant equation to a con-
stant yields the evolution equation for magnetic flux ψ:

(
1− δ2

e∇2
) dψ
dt

=
η‖
µ0
∇2ψ − ∂Ψ

∂t
. (7)

Here, the constant of the spatial integration is ∂Ψ/∂t =
EAz (t), the inductive axial (toroidal) electric field, which
is the “source” of magnetic flux ψ and hence field lines.
This term represents the effect of the magnetic flux
change in the central solenoid of a tokamak; it is negative
so the Poynting flux is in the −x direction — to balance,
in equilibrium, the resistivity-induced magnetic flux dif-
fusion [first term on the right in (7)] and thereby produce
a stationary magnetic field on the resistive time scale.
Resistive diffusion of the magnetic flux ψ is induced by
the effect of the (parallel) plasma resistivity η → η‖ on
the (parallel) current density Jz ≡ (1/µ0)∇2ψ.

Since η‖/µ0 ∼ νeδ
2
e , for scale lengths x less than δe

in (7) where the δ2
e∇2 term dominates on the left: the

magnetic field diffusivity becomes negligible, the solution
for ψ becomes spatially constant [11], and hence no mag-
netic field lines are produced (i.e., êz×∇ψ → 0) or dif-
fuse in this region. The paleoclassical analysis will thus
be restricted to |x| > δe and interpret that ψ represents
diffusing field lines only for |x| > δe, |`| < `δ ≤ `max.

Neglecting the δ2
e∇2 operator (assuming x2 > δ2

e) in
(7) and the advective V ·∇ψ term, which on the trans-
port time scale (t > 1/νe) is negligible [11] compared to
the flux induced by Dη, the equation for ψ(x, t) becomes
a simple diffusion equation

∂ψ

∂t
= Dη

∂2ψ

∂x2
− ∂Ψ

∂t
, Dη ≡

η‖
µ0
. (8)

Since the time scales of interest are long compared
to the electron gyrofrequency, the electron kinetics is
usually described by a gyro-averaged kinetic equation
which is called a drift-kinetic equation [5]. In the usual
drift-kinetic equation magnetic flux surfaces and hence
field lines are assumed to be stationary — but (8) indi-
cates ψ obeys a diffusion equation. In particular, con-
sider the evolution of the (small) magnetic flux (bun-
dle of field lines) δψ(x, t) that penetrates the circular
cross-section of the gyroorbit of an electron gyrating at
its gyroradius %e ≡ v⊥/ωce ∼ 0.1 mm around a mag-
netic field line. Substituting ψ → ψ0 + δψ(x, t) with
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ψ0 ≡ B0x
2/2LS into (8) and using the equilibrium rela-

tion Dη ∂
2ψ0/∂x

2 ≡ η‖Jz = EAz ≡ ∂Ψ/∂t, one obtains

∂ δψ/∂t = Dη ∂
2δψ/∂x2. (9)

Since the electron gyroradius is small (%e << δe), δψ
can be taken to be a unit delta function initially; for this
initial condition the solution of (9) is

δψ(x, t) = e−x
2/ 4Dηt/ (4πDηt )1/2, t ≥ 0. (10)

This small, initially localized flux diffuses radially with a
radial spreading that grows linearly with time:

〈x2〉 ≡
∫ ∞
−∞

dxx2δψ(x, t) = 2Dηt. (11)

Thus, because of Dη, as time progresses a bundle of field
lines initially located at x = 0 assumes a probability dis-
tribution given by (10) whose radial spread grows accord-
ing to (11) — even for a stationary magnetic field!

This radial (x) diffusion of the bundle of magnetic field
lines penetrating the electron gyroorbit causes the radial
coordinate (x or ψ) of the electron guiding center to be
a “stochastic” variable in the drift-kinetic equation. In
particular, it implies (for x2 > δ2

e , `2 < `2δ ≤ `2max) a
Fokker-Planck diffusion coefficient

〈(∆x)2〉
∆t

≡ d〈x2〉
dt

= 2Dη, (12)

and a vanishing “drag” coefficient: 〈∆x〉/∆t = 0.
The “stochastic” field line diffusion effects are taken

into account [12, 13] by adding a spatial Fokker-Planck
diffusion operator to the usual drift-kinetic equation [5]:

∂f/∂t + v‖ ∂f/∂`
∣∣
ψ

= C{f}+D{f}. (13)

In this magnetic-field-diffusion-Modified Drift-Kinetic
Equation (MDKE), f(x,v, t)→ f(ψ, `, v‖, v, t) is the dis-
tribution function, ψ is the radial field line label of the
electron guiding center position, ` is the distance along
a field line, v‖ ≡ v ·B/B is the particle speed along
B, and C is the Coulomb collision operator. Particle
drifts off field lines have been neglected because in mag-
netized axisymmetric toroidal plasmas their radial ex-
cursions (∆x ∼ % q/ε1/2) are small compared to the mag-
netic field diffusion scale length δe ≡ c/ωp for the usual
low electron pressure situations where βe < ε/q2. Finally,
the spatial Fokker-Planck operator is [12, 13]

D{f} ≡ ∂2

∂x2

〈(∆x)2〉
2∆t

f =
∂2

∂x2
Dηf. (14)

The lowest order approximation to the MDKE (13)
includes parallel free-streaming and Coulomb collisions:

v‖ ∂f0/∂`
∣∣
ψ

= C{f0}. (15)

For long collision lengths λe compared to the (period-
icity) length of a helical field line `∗, its solution is a
Maxwellian distribution constant along magnetic field
lines, and hence a function of the local flux function ψ:

f0(ψ, v, t) = ne(ψ, t)
(

me

2πTe(ψ, t)

)3/2

e−mev
2/2Te(ψ,t).

(16)
Physically, the electron temperature Te is equilibrated
along helical field lines by parallel electron heat con-
duction. For λe < `∗ this process limits the parallel
length over which this solution applies to λe. Thus, the
Maxwellian f0 in (16) is only applicable for |`| ≤ `fM ≡
min{`∗, λe}. The dependence of ne and Te on time t in
(16) allows for their transport time scale evolution.

To obtain an electron energy balance equation one
takes the energy (

∫
d3vmev

2/2) moment of (13) using
f ' f0. However, since in toroidal geometry the length
2 `∗ of a helical rational field line is n times longer than
the poloidal periodicity length 2πR0q, to take account of
the n times a helical field line wraps around the poloidal
(periodicity) direction, the D{f0} operator is also op-
erated on by

∫ `∗
−`∗ d`/2πR0q. (Formally, in axisymmetric

toroidal geometry this factor emerges [11] from a balloon-
ing representation [11, 14] used to preserve the poloidal
and helical periodicities for these “flute-like” responses in
the vicinity of a rational surface.) Since Te is only equili-
brated over the parallel distance `fM , and the maximum
length of diffusing field lines is `max, this parallel inte-
gration is limited to −L to L, where L is defined in (4)
and the net effect is the multiplier M defined in (5). As-
suming for simplicity that only an electron temperature
gradient is present, one thus obtains:

3
2
∂Te(x, t)

∂t
=

∂2

∂x2
[χpc
e Te(x, t)] +

Qe
ne
, χpc

e ≡
3
2
MDη,

(17)
in which Qe is the collisional electron heating. The rele-
vant Dη and η‖ (for a toroidal plasma) parallel (neoclas-
sical, superscript nc) electrical resistivity are [11, 15]:

Dη ≡
ηnc
‖
µ0

,
ηnc
‖
η0
'

√
2 + Z√

2 + 13Z/4
+
µe
νe
. (18)

Here, Z (→ Zeff ≡
∑
i niZ

2
i /ne) is the (effective)

ion charge, the reference (perpendicular) resistivity is
η0/µ0 ≡ meνe/µ0nee

2 ' 1.4 × 103Z/[Te(eV)]3/2 m2/s,
and the parallel electron viscosity [15] µe/νe = [Z+

√
2−

ln(1 +
√

2)]ft/Zfc
Z=1−→ 1.5ft/fc in the banana collision-

ality regime with ft ' 1.46
√
ε+O(ε3/2) and fc ≡ 1− ft.

Equation (17) is a diffusion-type equation for the elec-
tron temperature Te with a paleoclassical diffusion coeffi-
cient χpc

e . Since χpc
e ∼MDη, Te relaxes a factor of order

M faster than the flux ψ does [cf., (8) and (17)].
In typical toroidal plasmas where λe > `max, χpc

e =
(3/2)nmax η

nc
‖ /µ0. For shorter λe or near a low or-

der rational surface, the parallel equilibration length is
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limited by these effects [11], as indicated in (4). Be-
cause the distance between a low order rational sur-
face q◦ ≡ m◦/n◦ and the nearest rational surface with
n = nmax is δx◦ ' 1/(n◦nmaxq

′) = (πδe/q′)1/2/n◦ [or,
at a minimum in q, δx◦min ' (2/n◦)2/3(πδe/q′′)1/3], only
the lowest n◦ rational surfaces (e.g., 1/1, 3/2, 2/1) will
be isolated enough radially from other n ≤ nmax rational
surfaces for χpc

e to be small (∼ n◦η/µ0) in their vicinity.
The salient and mysterious properties of “anomalous”

radial electron heat transport identified in the second
paragraph can be interpreted in terms of the paleoclassi-
cal model developed in (4), (5), (17) and (18) as follows:
1) Magnitude. For a typical ohmically-heated TFTR
plasma [16] Te ' 1.2 keV, ne ' 3 × 1019 m−3, Zeff ' 2,
R0 ' 2.5 m, q ' 1.6, and 1/q′ ' 0.4 m at the plasma half-
radius (r/a ' 0.4/0.8 = 0.5), which yields η0/µ0 ' 0.067
m2/s, ηnc

‖ /η0 ' 2.2, c/ωp ' 10−3 m, nmax ' 11, and λe '
300 m > πR0q nmax ' 140 m, so that L = πR0q nmax,
M = nmax ' 11, and the estimated χpc

e is 2.5 m2/s ∼
χexp
e . Since this χpc

e ∝ T
−3/2
e , it becomes less than 1 m2/s

for Te >∼ 2 keV — and it may then be smaller than possi-
ble microturbulence-induced transport. 2) Ratio To Dη.
For this TFTR case one has χpc

e /Dη = (3/2)M ' 17 >>
1. 3) Radial Variation. In the usually applicable “colli-
sionless paleoclassical regime” (λe > πR0q nmax), χpc

e ∝
T
−3/2
e increases as Te decreases from the hot plasma

core toward the cooler edge. 4) Collisionality Regime.
Tokamak plasmas will ohmically heat until Te is limited
by χpc

e , which is relevant only if λe > πR0q (banana-
plateau collisionality regime [5]). 5) Density Scaling. For
high density “collisional” plasmas with πR0q < λe <
πR0q nmax, χpc

e ∝ (vTe/R0q)(c/ωp)2 ∝ 1/ne, and τEe '
a2/4χpc

e ' 0.27 (ne/1020m−3) a2R0q [asssuming T
1/2
e '

(500 eV)1/2], which is an Alcator-like energy confinement
scaling law [7]. 6) Low Order Rational Surfaces. As in-
dicated in (4), L and hence χpc

e are much smaller near
low order (n◦ = 1, 2) rational surfaces, particularly when
q is near a minimum. 7) Near Separatrix. On closed field
lines just inside a magnetic separatrix, q and q′ are large,
and nmax and χpc

e are reduced [11].
Perhaps the most remarkable paleoclasssical predic-

tions are the reduced χe’s near low order rational sur-
faces, in agreement with some key experimental results.
For example, RTP experiments [8] showed that as highly
localized electron cyclotron heating (ECH) was moved

radially outward the central Te had a “stair-step” behav-
ior — it decreased abruptly as the ECH passed each low
order rational surface, which indicated low χe at such sur-
faces. Also, jumps in Te (over a narrow radial region ap-
proximately predicted by 2 δx◦min) have been observed in
evolving DIII-D L-mode plasmas [17] as an off-axis min-
imum in q(r) passes low order rational surfaces. Finally,
the paleoclassical model predicts a χpc

e profile, magni-
tude, and barrier width in reasonable agreement with
JT-60U experiments [9] that used reversed central shear
(q′ < 0) and apparently q◦min = 3/1 to produce a large Te
gradient in an electron internal transport barrier.
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