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This note explores the possibility that resistive ballooning modes [1] could
be unstable and responsible for plasma fluctuations and anomalous transport in
HSX. The philosophy used is that resistive-interchange theory can be used to
estimate key properties of resistive ballooning modes, with suitable adaptations
for the local radius of curvature RC and local magnetic shear length LS . Dia-
magnetic frequency effects are included since they may be important in HSX
plasmas and they determine the wavenumber beyond which one transitions to
drift wave instabilities. Theoretical properties of resistive-interchange modes
are discussed first. Next, plasma parameters assumed for HSX plasmas are dis-
cussed. Finally, the possibility that resistive ballooning modes could be unstable
and cause anomalous plasma transport in HSX is considered via adaptations of
resistive-interchange analysis. Also, a number of caveats on the simple analysis
presented here are noted. The tentative conclusion is that these types of modes
could be responsible for ky <∼ 1/ cm fluctuations and transport observed in HSX
near r/a ' 0.7 where Te ' 100 eV — but detailed studies taking account of
specifics of HSX geometry and plasma parameters are needed to know for sure.

Using a local simple sheared slab model that includes ∇B and curvature
effects, it can be shown [2] that the dispersion relation for “highly resistive”
pressure-gradient modes is given by (see Eq. (29) of [2])

ω(ω + τω∗)(ω − ω∗) = − i νη ω2
AD

2
I ≡ − i γ3

η , (1)

in which (in SI units) ω∗ ≡ kyV∗ = ky(Te/eBLp) = (ky%S) cS/Lp (with ion
sound speed cS ≡

√
Te/mi = 104

√
Te(eV) m/s, and %S ≡ cS/ωci) is the electron

diamagnetic flow frequency, 1/Lp ≡ −d ln pe/dr, and τ = Ti/Te. Also,

νη ≡ k2
y

η‖
µ0

= k2
yDη, dissipative frequency, ωA ≡

cA
LS

, Alfvén frequency, (2)

in which the magnetic field diffusivity induced by parallel (Spitzer) resistivity is

Dη ≡
η‖
µ0
' 700Zeff

[Te(eV)]3/2
m2

s
, magnetic diffusivity, (3)

and the pressure-gradient “drive” for the resistive-interchange instability is

DI ≡
L2
S β

RCLP
≡ − L

2
S

RC

dβ

dr
, instability drive, β ≡ pe + pi

B2/2µ0
, total β. (4)

Neglecting diamagnetic flow (ω∗) effects, the mode growth rate from (1) is

γη ' ν1/3
η (DIωA)2/3, resistive-interchange growth rate. (5)

The radial width of these modes determined from (28) in [2] is

δ '
[
DI(η‖/µ0)
ω − ω∗

]1/2
γη>>ω∗=⇒ δη

r
' D

1/6
I

(kyr)1/3S1/3
, mode width. (6)
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Here, a local ratio of resistive to Alfvén time (τA ≡ 1/ωA) has been defined:

S ≡ r2/(η‖/µ0)
1/ωA

≡ τR
τA
' 1.6× 1013 r

2B[Te(eV)]3/2

LSZeff
√
ni

Lundquist number. (7)

The diffusion coefficient for plasma transport induced by a turbulent spectrum
of such resistive-interchange instabilities is approximately [3]

Dturb '
∑
ky

γηδ
2
η ' NkyDI

η‖
µ0

= (NkyDI)Dη, turbulent diffusivity, (8)

in which Nky is a numerical factor (typically ∼ 2–3) that is the logarithm of an
effective Reynolds number; it reflects the sum over the unstable mode spectrum
[3]. Thus, resistive-interchange mode turbulence induces net transport that is
proportional to the magnetic field diffusivity Dη ≡ η‖/µ0. Since the Suydam
criterion for MHD stability of ideal interchange modes is DI < 1/4, one usually
infers that for the smaller DI in resistive-interchange instabilities Dturb

<∼ Dη.
Since HSX is typically in a minimum-average-B (average magnetic well)

configuration, the average curvature in it is favorable [RC < 0 in (4)] and
DI < 0. Hence, ideal and resistive interchange instabilities, for which the mode
amplitude does not vary along a field line (i.e., k‖ = 0), are usually stable in
HSX. However, resistive balloooning modes [1] could be unstable in HSX if the
modes are larger (“balloon”) in regions that have bad local curvature (for the
instability drive) and low local magnetic field shear (to minimize stabilizing
effects of field line bending) within each field period — but with an envelope
that extends over many field periods along field lines. Properties of possible
resistive ballooning instabilities in HSX can be explored using the properties
of resistive-interchange modes developed in (1)–(8) by making the adaptations
of assuming RlC is the local (superscript l) bad curvature radius and the local
shear length LlS represents an appropriate average of 1/L2

S over the region along
a field line where the mode amplitude is largest within a field period. Thus, a
local instability parameter for resistive ballooning (RB) modes will be

Dl
RB ≡ −

(LlS)2

RlC

dβ

dr
, local resistive ballooning model instability parameter.

(9)
This instability parameter will used in place of DI in estimating properties of
resistive ballooning instabilities and the anomalous plasma transport they could
induce in HSX.

In order to estimate instability parameters for resistive ballooning modes in
HSX the following plasma parameters will be assumed [4] (at r ∼ 0.7a ' 0.07
m): Te ' 100 eV, Zeff ∼ 1.5 (a guess), ne ' 1018 m−3, Ti ' 25 eV, τ ≡
Ti/Te = 0.25, B ' 0.5 T, Lp ' LP ' 0.07 m. These plasma parameters for
HSX yield the following key parameters for resistive MHD modes: Dη ' 1 m2/s,
νη ' 200 (kyr)2/s, cA ' 107m/s, vTe ' 6×106 m/s, %S ' 2 mm, νe ' 7×104/s,
λe ≡ vTe/νe ' 100 m, β ' 2× 10−4, ω∗ ' 4× 104(kyr)/s.
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From the magnetic field properties that have been developed for HSX drift
wave analyses [5], one can guess a local bad curvature length of RlC ' 0.5 m
and a “typical” local magnetic shear length of LlS ' 30 m. Then, one obtains
an effective Dl

RB ' 5, ωA ' 3 × 105/s, and S ' 1500. Assuming further that
ky ' 1/cm, one obtains ky%S ' 0.2, kyr ' 7, νη ' 104, γη ' 3 × 105/s, and
δη ' 4 mm, which would imply a mixing length fluctuation level (for a single ky)
of ñky/ne ∼ δη/Ln ∼ 6% and a turbulent diffusivity on the order of Dturb ∼ 10
m2/s. These numbers are in reasonable agreement with observations of plasma
fluctuations and anomalous transport at r/a ' 0.7 [4] in HSX: fluctuation decor-
relation time >∼ 3 µs and length ∼ 1 cm, fluctuation level overall (i.e., summed
over all ky) >∼ 10%, and anomalous diffusion coefficient ∼ 10 m2/s. Further,
one can estimate an effective parallel wavenumber by k‖ ' kyδη/LS ' 1/(75 m).
This k‖ yields k2

‖v
2
Te/γηνe ' 0.3 < 1, which is consistent with a fluid response

for electrons on the 1/k‖ ' 75 m distance along field lines that the envelope of
the resistive ballooning modes would extend over. Thus, if the assumptions that
went into this analysis are reasonable, resistive-ballooning-type modes could be
a candidate for explaining the turbulent plasma fluctuations and anomalous
transport at r/a ' 0.7 in HSX.

There are, however, many important caveats and comments on this analysis:

1. Effects due to ω∗. The diamagnetic flow frequency ω∗ was neglected above.
However, for the parameters used ω∗ ' 4 × 104(kyr) ' 2.8 × 105/s,
which is almost equal to γη. Considering solutions of (1), which is a
third order polynomial equation for ω, ω∗ effects become significant (for
τ ≡ Ti/Te << 1) when γη/ω∗ <∼ (4/27)1/3 ' 0.5; they substantially reduce
the growth rate of the resistive ballooning modes, which propagate in the
electron diamagnetic flow direction (for Ti < Te), but do not completely
stabilize them. Since γη ∝ (kyr)2/3 whereas ω∗ ∝ kyr, at r/a ' 0.7 only
modes with kyr <∼ 7 would be “robust” resistive ballooning modes with
small ω∗ effects. Fluctuations due to modes with kyr >> 7 would have
k2
‖v

2
Te/ωνe > 1 and thus would likely have adiabatic electron responses

over all parallel scale lengths along field lines. Hence, kyr >> 7 fluctua-
tions at r/a ' 0.7 in HSX are likely to be due to drift wave instabilities.

2. Effective local shear length LlS . The key assumption in the preceding esti-
mates is that the effective average local shear in the region along field lines
where the resistive ballooning mode would be localized is characterized by
LlS ' 30 m. While the global average magnetic shear ŝ ≡ (r/q)(dq/dr)
(with q ≡ 2π/ι) is very small in HSX (ŝ <∼ 0.03 for r <∼ 0.7a), which would
imply a global LS ' Rq/ŝ >∼ 30 m, it is not clear what an appropriate value
of LlS is for resistive ballooning modes. Values of the LlS greater than the
30 m used above would cause larger ky resistive ballooning modes to be
unstable without significant ω∗ effects because Dl

RB ∝ (LlS)2. Smaller val-
ues give smaller Dl

RB and cause γη to decrease relative to ω∗, which would
cause the range of kyr for robust instability of resistive ballooning modes
to decrease (i.e., to less than the critical value of 7 estimated above).
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3. Perpendicular compressibility. The preceding analysis neglected perpen-
dicular compressibility effects on resistive ballooning modes introduced by
an average over the combined effects of parallel variations of the geodesic
curvature and mode amplitude along field lines [6]. The characteristic
perpendicular compressibility frequency in tokamaks is ω⊥ =

√
2 cS/R0.

It stabilizes very low ky resistive ballooning modes when γη <∼ ω⊥. Using
these tokamak-based formulas for resistive ballooning modes in HSX, one
finds that only kyr ∼ 1 modes would likely be stabilized by perpendicular
compressibility effects. But a full resistive ballooning mode analysis needs
to be carried out for the HSX geometry to properly quantify these effects.

4. Parallel extent of mode. In the preceding analysis the parallel extent of the
resistive ballooning mode was characterized by 1/k‖ ' 75 m. This length is
on the order of the electron collision length λe ' 100 m. It also represents
going along field lines about 10 times around the toroidal circumference
of HSX, or over about 40 of its field periods. Usually, one considers a
fluidlike analysis to be appropriate only for k‖λe < 1, which is violated
by these numbers. However, since, as noted above, k2

‖v
2
Te/γηνe ∼ 0.3 < 1,

the preceding fluidlike analysis might still be valid.

5. Nearly adiabatic response within a field period. While resistive balloon-
ing mode analysis uses a fluid response for electrons on the long parallel
length over which the mode extends, on the short scale length of one field
period where kl‖ ∼ N/R0 = 4/R0, one obtains (kl‖)

2v2
Te/γηνe >> 1 which

implies an adiabatic electron response [7]. In the ballooning mode analysis
the overall mode eigenfunction that would be observed experimentally is
obtained by summing over the short-scale responses in each field period
modulated by the long scale parallel envelope. It would thus would rep-
resent a combination of adiabatic and fluidlike responses. Thus, it might
not be in disagreement with HSX measurements, which apparently show
that to lowest order the electrons have a nearly adiabatic response with
the density and potential fluctuations being nearly in phase.

6. Electron inertia effects. In the preceding estimates it was implicitly as-
sumed that the electron collision frequency νe (∼ 7× 104/s) is larger than
the mode growth rate γη (∼ 3 × 105/s). Since this is not the case, one
should add electron inertia effects to the parallel Ohm’s law used in the
analysis in [2]. While this situation has apparently never been worked
out in detail, its possible effects can be estimated by replacing the par-
allel electrical resistivity by η‖ → η‖(1 + γη/νe). This causes the mode
width to scale as δ ∼ D

1/2
I c/ωp ∼ 1 cm, and the mode growth rate to

scale as γ ∼ γη(γη/νe)1/2 ∼ 2γη ∼ 6 × 105/s. However, it would also
need to be confirmed that this type of ballooning mode in which electron
inertia determines the parallel mode length 1/k‖ (∼ 35 m here) is in fact
unstable. If such modes are unstable, they might better be characterized
as “electron inertia” ballooning modes rather than “resistive” ballooning
modes.

4



7. Perpendicular diffusion effects. After a number of unstable resistive bal-
looning modes grow, develop a “bubbling” turbulent spectrum of modes,
and cause anomalous diffusion, they introduce another characteristic damp-
ing frequency [3] γD ∼ k2

xDturb. Using kx ∼ 1/δη and the HSX resistive
ballooning mode estimates above one finds γD ∼ 6 × 105/s, which is a
factor of 2 larger than the growth rate γη. Thus, maybe Dturb is a factor
of 2 smaller, i.e., Dturb ∼ 5 m2/s. However, a full, multi-mode nonlin-
ear turbulence and turbulent transport simulation would be required to
determine the appropriate value of Dturb for HSX plasmas.

8. E×B flow shear stabilization? For flow shear stabilization one would
apparently need γη < ωE ∼ (kyδ)(Er/B r) ' 30Er, or Er > 100 V/cm,
which seems a bit large and perhaps not experimentally feasible?

9. Effects of parameter changes. The main effect of changes in parameters in
HSX is in the kyr boundary below which robust resistive ballooning insta-
bilities might be present and above which drift wave instabilities should
occur. Using a criterion γη/ω∗ ∼ 1 to determine the boundary, one finds

(kyr)crit ∝
neB

T
5/2
e

rLP (LlS)2

(RlC)2
. (10)

Thus, resistive ballooning instabilities should be restricted to a lower range
of ky as one moves inward and Te increases. Conversely, if the density is
increased, and after the magnetic field B is doubled to 1 Tesla in upcoming
HSX experiments, a broader range in ky should be unstable.

In summary, resistive (→ electron inertia?) ballooning modes may be a rea-
sonable candidate for explaining the ky <∼ 1/cm fluctuations and the anomalous
plasma transport they could induce at r/a ∼ 0.7 in HSX. However, a lot of
effects (ω∗, effective magnetic shear length LlS , perpendicular compressibility,
k‖λe, electron inertia, turbulent spectrum and anomalous transport it induces)
need to be explored before one can conclude these modes are in fact unstable
and that they contribute significantly to the observed plasma fluctuations and
anomalous transport over about the outer half of HSX plasmas.

The author is grateful to C.C. Hegna and W.A. Guttenfelder for numerous
discussions of resistive ballooning mode theory and HSX plasma parameters,
respectively.
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