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A model for field error penetration is developed that includes non-resonant as well

as the usual resonant field error effects. The non-resonant components cause a neo-

classical toroidal viscous torque that keeps the plasma rotating at a rate comparable

to the ion diamagnetic frequency. The new theory is used to examine resonant error-

field penetration threshold scaling in ohmic tokamak plasmas. Compared to previous

theoretical results, we find the plasma is less susceptible to error-field penetration

and locking, by a factor that depends on the non-resonant error-field amplitude.

PACS numbers: 52.30.Ex, 52.55.Tn, 52.25.Fi, 52.55.Fa

Efforts to understand the penetration of non-axisymmetric magnetic field perturbations—

“error-fields”—into high temperature plasmas have concentrated on the role of resonant

components. In this work, it is shown that non-resonant magnetic field perturbations can

play a crucial role in the error-field penetration problem by producing a global neoclassical

torque that damps toroidal flow to a diamagnetic ion-type flow. In contrast, a resonant

perturbation produces a localized electromagnetic torque at its respective resonant surface.

Accounting for both these effects leads to a criterion for the error-field penetration which

indicates that the critical resonant error-field amplitude increases with plasma density, a

result that is in better qualitative agreement with empirical scaling [1].

Considerable theoretical [2, 3] and experimental [1, 4, 5] effort has been aimed at under-

standing the effects of small resonant helical magnetic field errors—arising from field coil

misalignments and non-axisymmetric coil feed-throughs—on plasma confinement in toka-

maks. The impetus for this research has come from the experimental correlation between

the emergence of locked modes and disruptions in tearing-stable low-density ohmic dis-

charges. Error-field locked modes are induced and develop as follows [1, 4]: 1) the resonant

error field is ramped up linearly or the electron density is ramped down slowly (> 100 ms),
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2) when the locked mode threshold is reached, a rapid (∼ 5 ms) bifurcation to a non-rotating

“locked-state” is observed, and then 3) for ∼ 100 ms a stationary magnetic island—driven by

the error field—develops (usually on the q = 2 surface) and leads to either a major disrup-

tion or confinement degradation. Locked mode avoidance in low-density ohmic discharges is

highly desirable—if not crucial—for reliable tokamak operation.

To date, the theoretical and experimental error-field studies have been confined to pre-

dicting the resonant (e.g., m/n = 2/1) critical error-field strength (as a function of plasma

density, toroidal field strength, and other variables) when bifurcation occurs and after which

a locked mode develops. Currently, empirical and theoretical locked mode thresholds do not

agree on the scaling to larger devices. Predictive capability for locked-mode avoidance on

ITER [6] is needed. The present benchmark scenario for ITER relies on an ohmic start-up

with an anticipated low toroidal rotation rate (∼ 0.5 kHz).

The standard model [2, 3] employed to describe error-field penetration considers the re-

sponse of a toroidally-rotating tearing-stable plasma to a single resonant helical magnetic

perturbation. The resonant field component exerts an electromagnetic torque on the plasma

only in the vicinity of its rational surface [2]. This torque is brought about by the nonlinear

interaction of error-field-induced eddy-currents in a singular layer around the rational surface

with the error-field itself and is directed against the flow, trying to brake the plasma. The-

oretical predictions of the eddy current response in the layer depend on the physics model

employed. The standard model assumes a phenomenological diffusive perpendicular vis-

cous torque that opposes the electromagnetic braking torque, trying to maintain the plasma

flow profile. The steady-state balance between electromagnetic and viscous torques yields a

transcendental equation whose roots give the modified layer velocity (in the presence of the

resonant error-field) as a function of error-field strength. Above a critical error-field strength

the electromagnetic torque on the resonant surface exceeds the perpendicular viscous torque

on the plasma flow, and the rational surface bifurcates to a stationary, or locked state. This

bifurcation is termed error-field penetration, and the critical error-field strength at which it

occurs is known as the penetration threshold. After locking, magnetic reconnection on the

resonant surface proceeds unhindered, as if there were no equilibrium plasma flow. This

scenario closely mimics observations of error-field penetration occurring during the ohmic

start-up phase of several tokamaks [1, 4, 5].

While resonant components of the magnetic field perturbation spectrum have domi-
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nated the theoretical discussion, in tokamak experiments many non-resonant components

are present and they can be larger in magnitude than the resonant components. While the

non-resonant components in and of themselves cannot produce locking, these components

can have a profound effect on the plasma through their role in damping the toroidal flow by

a neoclassical viscous torque mechanism. Recent experiments on NSTX with large applied

non-resonant magnetic perturbations demonstrated qualitative and quantitative agreement

[7] with theoretical predictions [8] of toroidal flow damping.

In the context of fluid theory, Neoclassical Toroidal Viscosity [NTV] can be understood as

the toroidal drag force experienced by the plasma moving along distorted flux surfaces having

broken toroidal symmetry. We will consider the drag induced by an error field consisting

of one resonant (i.e., m = 2, n = 1) and many non-resonant harmonics. Assuming the

error-field-induced distortion within the toroidal plasma is small enough that the flux surface

remains intact on average, we may employ the theoretical formulation of Shaing [8]. On each

flux surface, the magnetic field strength is decomposed into helical harmonics in Hamada

coordinates (Θ, ζ):

B = B0

(

1 +
∑

(n′,m′)6=(0,0)

[bn′m′/B0] e
i(m′Θ−n′ζ)

)

. (1)

The toroidal momentum dissipation arising from NTV is described through the toroidal

component of the ion viscous stress tensor and leads to a toroidal flow velocity evolution

equation of the form [8]

∂t

〈

~et · ~V
〉

= −
〈

(1/ρm)~et · ~∇ ·
↔
Π

〉

+ · · · , (2)

where ρm is the mass density, ~et is the covariant basis vector pointing in the toroidal direction,
↔
Π is the ion viscous stress tensor, and 〈 · · · 〉 denotes a flux surface average. Evaluating the

NTV force in the usually dominant low collisionality (1/ν) regime the NTV force yields [7, 8]

〈

(1/ρm)~et · ~∇ ·
↔
Π

〉

= ν‖

(

b
1/ν
eff

)2
(

Vt − V NC
∗

)

, (3)

(

b
1/ν
eff

)2

≃ 1.74 Bφ (R0q)
2 ǫ3/2

〈

1

Bφ

〉 〈

1

R2

〉

∑

(n′,m′)6=(0,0)

∣

∣

∣

∣

n′bn′m′

B0

∣

∣

∣

∣

2

Wn′m′ . (4)

Here R is the major radius, R0 is the major radius of the magnetic axis, r is the minor

radial coordinate, ǫ = r/R0, ν‖ = ω2
ti/νi, ωti ≡ vti/(R0q) is the ion transit frequency, νi is

the ion-ion collision frequency, and the dimensionless coefficients Wm′n′ are defined in [7].
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This regime is valid provided ωE < νi/ǫ <
√

ǫ ωti, where ωE is the E × B drift frequency.

Also, for the 1/ν regime V NC
∗ ≃ 3.5 R0q/(Zie rB0)dTi/dr [8], where Zie is the charge of the

ion species.

In the large aspect ratio limit, a toroidal plasma may be approximated by a periodic

cylinder, with nearly circular flux surfaces. Standard cylindrical coordinates (r, θ, z) and

simulated toroidal coordinates (r, θ, φ) with z = R0φ will be employed in this work. In

the following, dimensionless quantities are employed with all length-scales normalized to rs,

the resonant-surface minor radius. The major and minor radii of the plasma are R0 and a

(normalized to rs), respectively. The magnetic field is normalized to Bl ≡ s(rs)Bθ(rs), where

s(rs) = (d ln q/d ln r)rs

represents the magnetic shear at the resonant surface. Here, q(r) ≃
rB0/R0Bθ(r) is the safety-factor profile. All time-scales are normalized to τl = (rs/Vl),

where Vl = Bl/
√

µ0ρm(rs), and ρm(rs) is the mass density at the resonant surface.

The equilibrium toroidal momentum balance equation in the absence of error-fields is:

(1/r)(d/dr)[µ(r)rdV 0
φ /dr] = −F0. Its solution—V 0

φ (r) = V0

[∫ a

1
xdx/µ(x)

]−1 ∫ a

r
xdx/µ(x)—

satisfies the boundary conditions Vφ(a) = 0 and Vφ(1) = V0. Here, µ(r) is the (phe-

nomenological) ion perpendicular viscosity [normalized to Vlrsρm(rs)] that represents cross-

field momentum transport due to collisional effects or microturbulence. The driving force

F0 = 2V0[
∫ a

1
xdx/µ(x)]−1 supports the flow against perpendicular viscous damping with the

boundary at r = a.

In the presence of static error fields, two additional forces enter the toroidal momentum

balance equation. The first—a resonant electromagnetic torque—is strongly localized around

the resonant surface and can be represented by FEMδ(r − 1)/r, where δ(r − 1) is the Dirac

delta function. (The coefficient FEM must be resolved using boundary layer analysis on the

resonant surface and will be specified in what follows.) The second force arises from NTV

(discussed above) and may be included in the toroidal momentum balance equation as:

F NC
φ = −ν‖τl b

2(r)
[

Vφ(r) − V NC
∗ (r)

]

. (5)

The effective perturbed magnetic field profile b2(r) ≡ (b
1/ν
eff )2, is given by (4). Thus, the new

toroidal momentum balance equation is given by

1

r

d

dr

(

µ̂(r)r
dVφ(r)

dr

)

− b̂2(r)Γ2
s

[

Vφ(r) − V NC
∗ (r)

]

= −FE,M

µs

δ(r − 1)

r
− F0

µs
, (6)
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where µ̂ = µ(r)/µs, µs = µ(rs), b̂(r) = b(r)/b(rs), and

Γs =
√

ν‖τl/µs b(rs). (7)

The parameter Γs determines whether perpendicular (anomalous or collisional) viscosity

dominates over parallel (neoclassical toroidal) viscosity [NTV] in the bulk plasma. In the

limit Γs ≪ 1, NTV is negligible and the previous drift-MHD theory is obtained [3]. In the

opposite limit Γs ≫ 1, NTV dominates over perpendicular viscosity, and an entirely new

prediction for the error-field penetration threshold is obtained.

The solution of (6) satisfying Vφ(a) = 0, Vφ(1) = V is

Vφ(r) =
(

V − Ṽ0

) G(r, 1)

G(1, 1)
+

2V0

Γ2
s

(
∫ a

1

xdx

µ̂(x)

)−1 ∫ a

0

t G(r, t) dt +

∫ a

0

V NC
∗ (t) t b̂2(t) G(r, t) dt,

(8)

where G(r, t) is the Green function for the operator on the left of (6). The quantity Ṽ0,

defined by

Ṽ0 =
2V0

Γ2
s

(
∫ a

1

xdx

µ̂(x)

)−1 ∫ a

0

t G(1, t) dt +

∫ a

0

V NC
∗ (t) t b̂2(t) G(1, t) dt, (9)

is the toroidal plasma velocity at the resonant surface when FE,M = 0 and represents the

change in the equilibrium velocity due solely to neoclassical viscosity.

The error-field penetration threshold is obtained by integrating the toroidal torques across

the resonant surface [2] (i.e.,
∫ ∫ ∫

r dr dz dθR0 { (6) }). Inspection of (6) reveals that the

neoclassical layer torque (Tφ,NTV ) and perpendicular viscous torque (Tφ,V S) satisfy Tφ,NTV ≃
δ G(1, 1) Tφ,V S, where δ ≪ 1 is the linear layer thickness. We assume

G(1, 1) δ ≪ 1, (10)

which guarantees NTV may be neglected within the resonant layer. This constraint has two

consequences: 1) as in previous drift-MHD work [3], the resonant layer toroidal torque bal-

ance expression is still between (albeit modified) perpendicular viscous and electromagnetic

torques [i.e., Tφ,V S + Tφ,EM = 0]; and 2) we can use the previous drift-MHD analysis [3] to

evaluate the plasma response in the resonant layer.

The layer response function is given by ∆ = ∂ln[br,nm(r)]/∂r|1+1− . For consistency with

layer results in [3], we define the Lundquist number as S = τR/τH , where τR = µ0r
2
s/η(rs)

and τH = (R0

√

µ0ρm(rs))/ [ns(rs)Bφ] = τl/m. Here η(rs) is the (dimensional) parallel
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neoclassical resistivity at the resonant surface. The net electromagnetic torque acting on

the resonant surface is [2]

Tφ,EM = 8π2nR0
Im{∆}

|−∆′
s + ∆|2

∣

∣bvac
r,nm

∣

∣

2
, (11)

where bvac
r,nm is the vacuum radial magnetic perturbation associated with the resonant error-

field component (at the resonant surface). Here ∆′
s is the conventional tearing stability index

of the (stable) m, n mode. In the absence of any resonant error-field, the oscillation frequency

of a spontaneous tearing mode on the m, n surface would be ω̃0 ≡ ~k · ~V = mVθ,0 − nṼ0/R0.

Likewise, the “slip frequency”—the negative of the resonant field-error frequency at the

rational surface as seen in the plasma frame—is ω = mVθ,0 − nV/R0. (The poloidal flow

is strongly damped [9] in tokamaks and hence does not respond to any error-field-induced

torque). Expressed in terms of these frequencies, the perpendicular viscous torque acting

across the resonant layer is

Tφ,V S = 4π2R2
0

[

µ(r)r
∂Vφ

∂r

]1+

1−

=
4π2R3

0µsΓ
2
s

n G(1, 1)
(ω − ω̃0). (12)

The boundary layer analysis in [3] utilizes stretched variables; for consistency with that

work we similarly define Q = S1/3ω/m, Q̃0 = S1/3ω̃0/m, and ∆̂ = S−1/3∆. (The dimensional

form of these definitions is Q = S1/3ωτH , with ω being the dimensional frequency.) Thus,

the steady-state torque balance equation for the resonant layer (Tφ,EM + Tφ V S = 0) is

∣

∣

∣

∣

bvac
r,nm

Bφ

∣

∣

∣

∣

2
Im{∆̂(Q)}
|α + ∆̂(Q)|2

=
P

κS
(Q̃0 − Q), (13)

where κ ≡ 2G(1, 1)/[s(rs)Γs]
2. As in [3] α = −S−1/3∆′

s, P = τR/τV = µ0µi(rs)/[η(rs)ρm(rs)]

is the magnetic Prandtl number at the resonant surface, and the perpendicular viscous

timescale is given by τV = r2
sρm(rs)/µi(rs), where µi(rs) is the (dimensional) viscosity. Since

S ≫ 1 and P ≥ 1 in a high temperature tokamak plasma and a tearing-stable m, n mode is

assumed, |∆′
s| ∼ O(1), α ≪ 1, and to a good approximation we may neglect α in the above

torque balance equation. The error-field penetration threshold corresponds to the critical

error-field amplitude above which torque balance is lost, i.e., where the approximated torque

balance equation has no solution [2]. It follows that

∣

∣

∣

∣

bvac
r,nm

Bφ

∣

∣

∣

∣

2

crit

= max











P

κS

(Q̃0 − Q)
∣

∣

∣
∆̂(Q)

∣

∣

∣

2

Im{∆̂(Q)}











, (14)
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where the maximum is obtained by varying Q.

Recalling S ≫ 1, P ≥ 1, and inspecting Sect. IIIG of [3], a likely error-field response

regime is the 1st Semi-Collisional (SCi) regime, which is applicable for β1/2 D <
√

2Q <
√

2D2 P 1/3. Here, β = 10 µ0P0/(3B2
0) is the toroidal beta, where P0 is the equilibrium

plasma pressure, and D = S1/3 ρs(rs)/rs. The quantity ρs(rs) is the ion Larmor radius at

the resonant surface, calculated using the electron temperature. Different asymptotic layer

regimes will yield slightly different scalings—but not dramatically alter the conclusions of

this work. A subsequent publication will address this.

In the Γs ≫ 1 limit neoclassical viscosity dominates over perpendicular momentum dif-

fusion throughout the bulk plasma in the vicinity of the resonant surface. In this limit, the

homogeneous part of (6) admits a WKB solution [10] for the Green function:

G(r, t) = ΓsA(r, t)











exp [−Γs

∫ t

r
φ(x) dx], r ≤ t,

exp [−Γs

∫ r

t
φ(x) dx], t ≤ r,

(15)

where A(r, t) = [4 t r b̂(t) b̂(r)
√

µ̂(t)µ̂(r)]−1/2, and φ(x) = b̂(x)/
√

µ̂(x). Direct evaluation

gives G(1, 1) = Γs/2 and κ = 1/([s(rs)]
2Γs). Inserting G(1, 1) into (10) yields the more

general condition 1 ≪ Γs ≪ 1/δ, ensuring that NTV dominates in the bulk plasma near,

but not within, the resonant layer. For Γs ≫ 1, the integrand in (15) is strongly localized

about the point r = t, and when (15) is inserted into (9), we find Ṽ0 ≃ V NC
∗ (1).

For simplicity, we assume Ti ≃ Te, which implies the neoclassical velocity at the resonant

surface, V NC
∗ (1), scales as V NC

∗ ≃ [R0m/(rsn)]V∗, i ∼ [R0m/(rsn)]V∗, e, in which V∗, i(e) are the

ion (electron) diamagnetic flow velocities, respectively. Hence Q̃0 ∼ [R0m/(rsn)]S1/3ω∗τH ,

where ω∗ is the (dimensional) electron diamagnetic frequency at the resonant surface. Using

a Padé approximation valid for all values of Γs, we find the error-field penetration threshold

in the 1st Semi-Collisional (SCi) regime to be:

∣

∣

∣

∣

bvac
r,nm

Bφ

∣

∣

∣

∣

2

crit

≃ [s(rs)]
2rs

λR0

P (ω∗τH)5/2

ρ∗S1/2

[

1 + γ + γ2

1 + γ

]

, (16)

where λ = 2
∫ a

rs

[µ(rs)/µ(r)] (dr/r), ρ∗ = ρs(rs)/R0, and γ = [R0m/(rsn)]5/2λΓs.

In the limit Γs ≪ 1, NTV is negligible throughout the plasma and we recover the previous

drift-MHD result [3]. Most notably, in the new limit Γs ≫ 1 we find that

∣

∣

∣

∣

bvac
r,nm

Bφ

∣

∣

∣

∣

2

crit

∝ P (ω∗τH)5/2Γs

ρ∗S1/2
; (17)
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i.e., the square of the penetration threshold increases by a factor ∼ Γs ≡
√

ν‖τl/µs b(rs) =
√

ν‖τV b(rs) over the previous result. In this limit, the NTV torque effectively enhances the

perpendicular viscosity by reducing the typical bulk velocity profile scale length near the

resonant layer, thereby making it more difficult for a resonant field error to lock the rational

surface.

As an application of this theory, consider a class of ohmically heated tokamak plasmas

in which the aspect ratio, R0/a, and the equilibrium profiles are held fixed. By definition,

ω∗ τH ∝ Te
√

ne/
(

R0 B 2
φ

)

, S ∝ Bφ T
3/2

e R0/
√

ne, ρ∗ ∝ T
1/2

e /(R0 Bφ), and P ∝ R 2
0 T

3/2
e /τV .

Finally, in the low collisionality (1/ν) NTV regime ν‖ = ω2
ti/νi ∝ T

5/2
e /(R2

0ne). It follows

that the new SCi error-field penetration threshold scales as

∣

∣

∣

∣

bvac
r,nm

Bφ

∣

∣

∣

∣

crit

∝ ne B
−9/2
φ R−1

0 T 4
e τ

−1/2
V σ, (18)

σ =

√

∑

(n′,m′)6=(0,0)

∣

∣n′bn′m′/bvac
r,nm

∣

∣

2
Wn′m′ . (19)

Here, σ is the ratio of the “effective” non-resonant to resonant error field at the resonant

surface.

In the limit 1 ≪ Γs ≪ 1/δ neoclassical toroidal viscosity [NTV] enhances perpendicular

viscosity near the resonant layer, thus increasing the critical resonant error-field strength

required for locking. This new prediction for the penetration threshold in the 1st Semi-

Collisional (SCi) layer regime [3] has two novel features: 1) a stronger dependence on electron

density than previously predicted [3] (a result in qualitative agreement with empirical scaling

studies [1] if Te and τV do not depend strongly on ne); 2) a dependence on the ratio,

σ, between the non-resonant and resonant error-field components, a feature that could be

tested in current tokamaks to determine the relevance of neoclassical toroidal viscosity in

ohmic discharges.
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