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boundary layer analysis is presented. This theory extends previous work by including

the effects of finite parallel heat transport, and is applicable to general three dimen-

sional magnetic configurations. In this work, particular attention is paid to the role of

finite parallel heat conduction in the context of pressure-induced island physics. It is

found that localized currents that require self-consistent deformation of the pressure

profile, such as resistive interchange and bootstrap currents, are attenuated by finite

parallel heat conduction when the magnetic islands are sufficiently small. However,

these anisotropic effects do not change saturated island widths caused by Pfirsch-

Schlüter current effects. Implications for finite pressure-induced island healing are

discussed.
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I. INTRODUCTION

Conventional magnetohydrodynamic (MHD) equilibrium theory requires that the force

balance equation J×B = ∇p is satisfied. In two-dimensional systems, topologically toroidal

flux functions are guaranteed to exist with the pressure constant on each surface. In general

three-dimensional configurations, the magnetic topology is described not only by regions

with flux surfaces but by magnetic islands and volume-filling stochastic magnetic fields. A

rigorous application of the force balance equation implies that pressure is constant in regions

of magnetic stochasticity. However, recent evidence from stellarator experiments suggest

that pressure gradients can be sustained in regions where the magnetic field is thought to

be stochastic.1,2 These findings hint at the importance of including finite parallel transport

effects in a self-consistent theory of flux surface destruction. In this work, the effect of finite

parallel heat conduction on the magnetic topology of 3-D equilibria is addressed.

Understanding the plasma physics involved in magnetic surface breakup due to pressure-

induced islands has been a topic of both analytic theory2–8 and computational studies.9–11

Additionally, analytical island theories have been proven useful to interpreting experimental

data of magnetic island dynamics in stellarators.12–14 In the majority of these studies, how-

ever, an assumption of equilibration along magnetic field lines B · ∇p = 0 is employed. In

the current work, the analytic theory of pressure-induced magnetic islands in 3-D equilibria

is revisited, where the rigid requirement of parallel equilibration along field lines is weakened

by allowing for the presence of finite, but large, parallel heat conduction.

Analytic island theories can provide insight into the numerical modeling of 3-D plasmas.

In 3-D equilibrium computations, different computational tools employ different assump-

tions concerning the relaxation of pressure along field lines. Whereas some numerical tools
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rigorously enforce B ·∇p = 0 as described above, others allow for finite diffusion coefficients

which can influence physical mechanisms which affect island size. Furthermore, extended

MHD codes have the ability to alter the magnitudes and degree of anisotropy in the various

diffusion coefficients used in the modeling. Analytic island theory helps inform the use of

these coefficients in modeling of stellarator island physics.

Analytic theories of pressure-induced magnetic islands begin by applying the MHD force

balance equation. In general 3-D configurations, this ideal MHD theory predicts singular

currents at rational surfaces when the magnetic surfaces are assumed to be topologically

toroidal. These singular currents can be separated into two classes. Resonant Pfirsch-

Schlüter currents appear in the presence of pressure gradients and resonant components of

1/B2. Additionally, the general solution allows for δ−function parallel currents at rational

surfaces. Both of these singularities can be resolved by allowing for the presence of magnetic

islands at the rational surface.

Analytic island theories for 3-D equilibria are closely related to theoretical approaches

used to describe nonlinear tearing mode evolution in tokamaks. In particular the effect of

finite parallel heat conduction on neoclassical tearing modes has been addressed explicitly

in previous work.15–17 Additionally, it has been noted that resistive interchange effects18

which are known to affect magnetic islands width calculations are also altered by finite

parallel heat conduction19. What is shown in these publications is that for sufficiently

small magnetic islands, the pressure profile in the vicinity of the magnetic island does not

equilibrate along the magnetic field lines. If the time for diffusion across the magnetic

island is short compared to the time to diffuse along the helically-deformed island magnetic

surfaces, then the pressure profile is relatively unaffected by the presence of the magnetic

island. However, for sufficiently large magnetic islands, equilibration along field lines is the
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the dominant process; the MHD condition B · ∇p = 0 is restored, and the conventional

picture of island-induced helical flat spots in the pressure profile is recovered. The critical

island width that separates these two asymptotic behaviors depends upon the ratio of the

perpendicular to parallel heat diffusion coefficients WC ∼ (χ⊥/χ‖)
1/4.15–17

In the current work a resistive MHD model is used to describe plasma quasineutrality.

The effects of neoclassical bootstrap currents are included in a modified Ohm’s law, and

finite parallel heat conduction is employed in the pressure evolution equation, similar to

that in previous analytic calculations.15 As such, two-fluid, plasma flow and kinetic effects

are ignored for simplicity. What is found is that the two classes of singular currents that

arise in 3-D equilibria are resolved by allowing for the formation of a magnetic island, but

these currents are affected by parallel heat conduction in different ways. As in the tokamak

case, island resistive interchange and bootstrap current profiles are sensitive to the detailed

transport properties that control the island pressure profile. In order for these physical

effects to affect magnetic island physics, the pressure profile must self-consistently deform

such that the localized island currents feel the effects of the magnetic island topology. As

noted above, for sufficiently small islands, the pressure profile is not helically distorted by

the island and the self-consistently produced island currents are small.

In contrast, the island resolved resonant Pfirsch-Schlüter currents are largely insensitive

to detailed pressure equilibration physics. The nature of the helical resonance for these

currents does not rely on pressure equilibration processes in the island region, but rather

the structure of the magnetic field spectrum which is controlled by global properties of the

plasma. A distinction between the effects of the ‘local’ currents described in the previous

paragraph relative to the ‘global’ Pfirsch-Schlüter currents has been previously been pointed

out in simulation work by Hayashi10. Hayashi’s result indicated that is was difficult to see
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the effects of the local currents on magnetic island physics; the global effects dominated. In

light of the results of the present calculation, it is possible to interpret why this result was

observed. If the ratio of parallel heat conductivity to perpendicular heat conductivity used

in the simulations was not too large, the critical island width (WC) would be large enough

to prevent the local physics from affecting saturated island widths.

This paper will follow a procedure similar to previous work to solve the boundary layer

problem of magnetic island dynamics.20 However, finite parallel transport effects are used in

calculating the pressure profile in fully 3-D magnetic topology. This technique will yield an

equation for island width which is unencumbered by restrictions on β or geometric shaping.

First, in Sect. II the boundary layer problem will be set up; the exterior solution of the

quasineutrality equation will be given, which highlights the singular nature of the current

sheet at the rational surface. This exterior solution will be matched asymptotically with

the interior solution in the final section of this paper. In Sect. III, the quasineutrality

equation will be solved in the interior region, where special treatment is given to finding

the pressure profile in light of finite parallel heat conduction. Once the pressure profile is

obtained, MHD force balance is employed to generate a Grad-Shafranov type expression

for magnetic island equilibrium which includes the effects of finite parallel transport. Next,

neoclassical bootstrap current effects are introduced through a modified Ohm’s law. Finally,

in Sect. IV asymptotic matching in the island region is employed to provide an expression

for equilibrium island width. The results are discussed in Sect. V.

II. SINGULAR CURRENTS

Finite plasma pressure creates currents within the plasma that alter the structure of

the magnetic field. To understand how magnetic flux surface destruction creates magnetic
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islands, one must understand how these currents alter the magnetic field topology. Much

can be learned about these pressure-induced currents by assuming the existence of well-

defined toroidal magnetic flux surfaces and applying the ideal MHD equilibrium equation,

J ×B = ∇p. However, as will be shown later in this section, this analysis results in singular

currents near the rational surface.

Analytically, this current singularity can be resolved by removing the constraint of well-

defined toroidal magnetic flux surfaces in the vicinity of the rational surface and applying

boundary layer theory. That is, two regions are defined: an exterior region, far from the

rational surface, and an interior region, close to the rational surface. First, the current will

be found in the exterior region by applying MHD equilibrium. This calculation is performed

with the constraint of well-defined toroidal magnetic flux surfaces, and will be carried out

below in this section. Then, in Sect. III, the constraint of well-defined toroidal flux surfaces

will be lifted in the region near the rational surface. Key to relaxing this constraint is ob-

taining and applying the correct expression for the pressure profile, as anisotropic transport

significantly affects the pressure profile in the vicinity of the rational surface. Once the

pressure profile is calculated, the solution of the quasineutrality equation and Ohm’s law

will yield the current in the interior region. Finally, to complete the boundary layer analysis,

the interior and exterior solutions will be matched asymptotically, resulting in an equation

which describes the equilibrium magnetic island width.

A. Coordinates and the equilibrium magnetic field

Far from the rational surface of interest, it will be assumed that magnetic field lines lie on

topologically toroidal magnetic flux surfaces. These surfaces will be labeled with ψ, where

2πψ is the enclosed toroidal flux. This provides the radial-like coordinate. The equilibrium
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magnetic field, using a contravariant and covariant basis in Boozer coordinates, is then

represented by21

B0 = ∇ψ ×∇θ +  ι∇ζ ×∇ψ (1)

B0 = β∗(ψ, θ, ζ)∇ψ + I(ψ)∇θ + g(ψ)∇ζ (2)

where ζ is the toriodal coordinate, θ is the poloidal coordinate, and  ι is the rotational

transform. It can be shown that g(ψ) and I(ψ) are related to the total poloidal and toroidal

current respectively. Although this work focuses on 3-D magnetic configurations which

include stellarators, there is no restriction on the value of the net toroidal current; I(ψ)

may not be 0. Taking the dot product of the covariant and the contravariant forms for the

magnetic field produces a convenient expression for the Jacobian:

J =
g +  ιI

B2
0

=
1

∇ψ ×∇α · ∇ζ (3)

B. Singular Plasma Current

To proceed with the boundary layer calculation, a solution for the plasma current must

first be found in the region far from the island - the “exterior region.” This current is

determined from the MHD force balance equation,

J × B = ∇p (4)

Eq.(4) implies that the magnetic flux surfaces are aligned with constant pressure surfaces.

That is, p is only a function of ψ. To find the plasma current, the quasineutrality condition

is employed,

∇ · J = 0 (5)

(B · ∇)Q = −∇ · B ×∇p
B2

(6)
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where the current is decomposed into components parallel and perpendicular to the magnetic

field, J = QB + J⊥. Here Q is the magnitude of the parallel current. The Jacobian and the

parallel current magnitude are now expanded as Fourier series,

Q =
∑

m,n

Qmne
imθ−inζ (7)

J =
∑

m,n

Jmne
imθ−inζ (8)

Solving Eq.(5) yields

Qmn = −p′0Jmn

g + n
m
I

( ιI + g)( ι− n
m

)
+ Q̂mnδ(ψ − ψs) (9)

where  ι =  ι(ψ) is the rotational transform,  ι(ψs) = n/m, and Q̂mn is the magnitude of the

current sheet at the rational surface. Notice that both terms in Eq.(9) are singular at the

rational surface, ψs. The first term in Eq.(9) represents the inhomogeneous solution to the

magnetic differential equation, Eq.(6). This term corresponds to the resonant component of

the Pfirsch-Schlüter current which becomes singular at the rational surface,  ι(ψs) = n/m.

It is driven by a pressure gradient and a non-zero contribution of the resonant harmonic

of 1/B2. The second term of Eq.(9) represents the homogeneous solution to Eq.(6) and

describes the localized currents driven near the rational surface. From the quasineutrality

condition Q̂mn cannot be determined; the constraint of topologically toroidal flux surfaces

must be relaxed.

III. ISLAND REGION

To determine the currents near the rational surface, the quasineturality equation is again

solved, but with the restriction of topologically toroidal flux surfaces relaxed. To solve

this problem, an ordering approach is used. In the following, it is assumed that a thin

8



magnetic island at the rational surface  ι(ψs) =  ι0 perturbs the equilibrium quantities, and

the quasineutrality equation is solved order by order. This analysis is similar to standard

Rutherford analysis of nonlinear tearing mode theory. In the following, we assume that the

nonlinear island width exceeds the linear resistive layer.22–25 Once this inner layer solution

is obtained, it will be matched asymtotically with the exterior solution found previously to

produce an equation for equilibrium magnetic island width.

A. Perturbations and Ordering

The perturbations to all quantities are described by the form f = f0 + δf where f0

describes the equilibrium assuming topologically toroidal flux surfaces, and δf is the per-

turbation due to the island. The basic ordering assumption is that δ = W/Φ ≪ 1, where W

is the island width in units of toroidal flux and Φ is the total enclosed toroidal flux in the

plasma. As stated above, it is assumed that W ≫ δres, where δres is the width in toroidal flux

of the resistive layer. All f0 quantities are order unity, as are the derivatives of f0 quantities.

For perturbed quantities, the radial derivatives (∂/∂ψ) are order 1/δ, while other derivatives

with respect to the angular coordinates (∂/∂ζ, ∂/∂θ) are order unity.

Using these orderings, pressure and parallel current will be expanded in powers of δ, and

the quasineutrality equation will be solved order by order,

p = p0 + δ1p1 + . . . (10)

Q = Q0 + δ1Q1 + . . . (11)

where superscripts refer to the order in δ.

Before discussing perturbations to the magnetic field, it is convenient to convert the

poloidal coordinate to a helical angle-like coordinate, α = θ−  ι0ζ , where  ι0 is the rotational

9



transform at the rational surface. The contravariant and covariant forms for the magnetic

field become

B0 = β∗(ψ, θ, ζ)∇ψ + I(ψ)∇α + [ ι0I(ψ) + g(ψ)]∇ζ (12)

B0 = ∇ψ ×∇α + ( ι−  ι0)∇ζ ×∇ψ (13)

Island-producing magnetic perturbations will be described by the vector magnetic poten-

tial

δA = Aα∇α + Aζ∇ζ

δB = ∇× δA

where the gauge Aψ = 0 is chosen. This allows the full magnetic field (equilibrium plus

perturbed) to be written as

B0 = ∇ψ ×∇α + ∇ζ ×∇Ψ∗ + ∇Aα ×∇α (14)

where Ψ∗ =  ι′x2/2 − Aζ is the helical flux function and x = ψ − ψs. If Aζ is dominated by

a single resonant harmonic, Aζ = Aζ(x) cos(mα), then the width of the island is given by

W = 4
√
Aζ(W/2)/ ι′. See Figure 1. Given the ordering above, near the island region Ψ∗,

Aα, and Aζ are all order δ2.

The key quantity which will be responsible for introducing finite anisotropic effects is

the perturbed pressure, δp. It will be found that p = p0 + δp0 + δp1, where δp1 contains

the anisotropic heat transport effects. Here, the subscript on δp1 refers to the order of the

anisotropic correction.

Finally, the following notation is used to indicate an average over ζ at fixed ψ and α:

f̄ ≡
∮

dζ

2π
f(ψ, α, ζ) (15)

f̃ = f − f̄ (16)
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FIG. 1. Contours of Ψ∗, plotted in (x, α).

And, bracket notation represents the derivative operator in the plane perpendicular to ∇ζ ,

[f, g] =
∂f

∂ψ

∂g

∂α
− ∂f

∂α

∂g

∂ψ
(17)

B. Resolution of the singular plasma current through island formation

In this subsection, we demonstrate that the singular nature of Eq.(9) is resolved by allow-

ing island formation at the rational surface. We now repeat the calculation of Sect.(II B),

but with total magnetic field as described by Eq.(14). The resulting equation for parallel

current, after averaging over ζ , is

[Ψ∗, Q] = −[p,J ] + ... (18)

where a number of terms on the RHS are, for the moment, neglected for simplicity (a

more complete quasineutrality condition is considered in the following section). Recall from

Sect.(II B), the source of the singular Pfirsch-Schlüter current is the resonant component of

the Jacobian, J . The Jacobian and the parallel current are now expanded as Fourier series
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in α and ζ . Assuming for the moment that only a single resonant harmonic is important,

the Jacobian and the helical flux function can be written,

J = Jmsns
(x) cos(msα) (19)

Ψ∗ =
 ι′x2

2
− Aζ(x) cos(msα) (20)

As will be shown in the following subsection, pressure equilibrates on flux surfaces to low-

est order, so that the pressure can be written, p ≈ p0(ψs)+p0(ψs)
′x. With this simplification,

Eq.(18) becomes

(
 ι′x−

∂Aζ
∂x

cos(msα)

)
∂Q

∂α
−msAζ sin(msα)

∂Q

∂x
= p′0msJmsns

(0) sin(msα) (21)

In the absence of Aζ, the solution to Eq.(21) produces the singular “1/x” response de-

scribed in Eq.(9). However with Aζ 6= 0, the resonant Pfirsch-Schlüter current is not singular.

Making the assumption that ∂Aζ/∂x is small in the island region (“constant psi approxima-

tion”), the solution to Eq.(21) is

Q =
−p′0Jmsns

(0)x

Aζ
+ f(Ψ∗) (22)

where f(Ψ∗) is the solution to the homogeneous problem [Ψ∗, Q] = 0. By allowing the

formation of a magnetic island at the rational surface, the singularity in the parallel current

is resolved. The parallel current is found to depend directly on the resonant Jacobian, and

inversely with Aζ .

In reality, this situation is more complicated than just resolving a single resonant har-

monic. More generally, the resonant Jacobian and the helical flux function can be written
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as a sum of many harmonics with varying phases,

J =
∑

k

Jkmskns
(x) cos(kmsα + φk) (23)

Ψ∗ =
 ι′x2

2
− Aζ (24)

=
 ι′x2

2
−
∑

k

Aζk(x) cos(kmsα + ηk) (25)

If stellarator symmetry is present, the Jacobian can be written as a cosine series with φk =

0.26 However, this simplification is not required in the following analysis, and a solution with

φk 6= 0 can be found. In this more general framework, Eq.(18) now becomes

(
 ι
′x−

∑

k

∂Aζk
∂x

cos(kmxα+ φk)

)
∂Q

∂α
−
∑

k

kmsAζk sin(kmsα + ηk)
∂Q

∂x

= p′0
∑

k

kmsJkmskns
(0) sin(kmsα + φk) (26)

With Aζk 6= 0, the “1/x” singularity can be resolved with special properties of Aζk. A

solution to Eq.(26) is given by

Q = −p′0x
Jmsns

Aζ1
+ f(Ψ∗) (27)

with Aζk/Aζ1 = Jkmskns
/Jmsns

and ηk = φk. The parallel current is found to depend

directly on the resonant Jacobian, and inversely with Aζ1. Furthermore, since Aζk/Aζ1 =

Jkmskns
/Jmsns

and ηk = φk, the helical flux function can be written

Ψ∗ =
 ι′x2

2
−Aζ1

[
cos(msα+ φ1) +

J2ms2ns

Jmsns

cos(2msα + φ2) +
J3ms3ns

Jmsns

cos(3msα + φ3) + ...

]

(28)

The solution given by Eqs. (27) and (28) depends on a special requirement of the magnetic

field. In particular it requires the X- and O-points of the island to correspond to the zeroes

of the right side of Eq.(26). If this is not the case, at the X- and O-points Eq.(18) assumes
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the form

0 =
∂p

∂x

∂J

∂α
(29)

To understand how this singularity is resolved, the pressure profile is more carefully treated.21

As discussed in the introduction, in the case where islands are small, the pressure profile in

the island is not flattened as in the large island case. The pressure profile remains largely

topologically toroidal, with minor deformation in the vicinity of the island. As a result the

radial thermal flux across topologically toroidal surfaces remains constant,

∇ · Γ = 0 (30)

Solution of this equation can be realized with a diffusion equation for pressure. Equating

the radial particle flux far from the island with that in the vicinity of the island, the pressure

gradient is found (see Appendix A)

p′0
p′∞

=
Dtot

DNR
PS

(
1 + ǫ2

x2

)
+Dother

(31)

where p′∞ is the pressure gradient far from the island, Dtot is the total diffusion coefficient

for all physical drives of radial particle flux, DNR
PS is the diffusion coefficient associated with

non-resonant Pfirsch-Schlüter drives, Dother = Dtot − DPS is the total diffusion coefficient

with the Pfirsch-Schlüter drives removed, and ǫ ≪ 1 is a numerical factor which includes a

ratio of resonant and non-resonant Jacobians and is defined in Eqs.(A13) and (A14). Eq.(31)

shows that, to maintain constant radial particle flux near the X- and O-points (as x → 0),

the transport coefficients become very large, causing the pressure gradient to vanish. Since

p′0 vanishes as x → 0, Eq.(18) is not singular at the X- and O-points. However, p′0 obtains

its asymptotic value p′∞ at a distance x ≃ ǫ
√
DNR
PS /Dtot ≪ 1 which is generally a very small

distance relative to other scales considered in the calculation. That is, p′0 is modified by this

increased transport in a tiny region near the X- and O-points.
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Finally, in the calculations throughout the rest of this paper, we do not explicitly make

the “constant-ψ ” approximation. This approximation will be naturally produced by our

analysis below.

Next, finite parallel transport effects will be added by including δp1(ψ, α). The profile δp1

self-consistently describes the effect of the island on the pressure profile in the island region.

These pressure modifications will subsequently produce pressure driven currents that will

self-consistently modify the magnetic island width.

C. Specification of the pressure profile via solution of the heat equation

Usually, B · ∇p = 0 is used in island width studies, implying pressure equilibration

along field lines. However, in this work we will not be using parallel momentum balance to

calculate the pressure profile. Instead, we will use a pressure evolution equation of the form

∂p

∂t
+ v · ∇p+ γp∇ · v = −∇ · q (32)

to determine the pressure profile. In the following, a magnetostatic equilibrium is assumed

in which case Eq.(32) reduces to −∇ · q = 0.

Before proceeding, a comparison of this approach to prior work is warranted. The nonlin-

ear calculation of this paper should reduce to the linear result in the limit of small islands.

The key difference between this paper and prior work is the correction resulting from finite

parallel heat transport. The pressure closure derived here differs from that used in standard

analyses that rely on the resistive MHD model.18 In Appendix B, the correction for finite

parallel heat conduction which is derived in this section is added to the linear layer equa-

tions. It will be found that the dispersion relation for this augmented linear analysis exactly

matches the small island limit of the nonlinear result of this paper, as expected.
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Because of the large anisotropies present in a fusion plasma, the heat equation is separated

into parts parallel and perpendicular to the magnetic field

−∇ · q = 0 (33)

−∇ · q‖ −∇ · q⊥ = 0 (34)

Assuming that heat transfer is diffusive, Fourier’s law of heat conduction is applied

q‖ = −χ‖b̂b̂ · ∇T (35)

q⊥ = −χ⊥∇⊥T (36)

where for simplicity χ‖ and χ⊥ are taken as constant. With these forms for q, the pressure

evolution equation is written

χ‖∇2
‖p+ χ⊥∇2

⊥p = 0 (37)

χ‖B · ∇
(

B · ∇p
B2

)
+ χ⊥∇2

⊥p = 0 (38)

where ∇2
⊥p ≡ ∇2p−∇2

‖p.

For thin islands in the vicinity of the rational surface, crudely the two terms in Eq.(37)

scale as

∇2
‖p ∼

(∆x)2p

L2
(39)

∇2
⊥p ∼

p

(∆x)2
(40)

where L is a characteristic length on the order of the equilibrium length scales and ∆x =

ψ − ψs. When ∆x satisfies

∆x≫ WC ∼ Φ

(
χ⊥
χ‖

) 1
4

, (41)

the first term in Eq.(37), representing parallel conduction, dominates and the pressure

equilibrates along helical magnetic field lines. Here, WC is a “critical island width” sim-

ilar to that found by Fitzpatrick.15 For the current work, it will be found that WC ∼
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(
χ⊥

χ‖
JB2J gψψ 1

 ι′2m2
s

) 1
4

, where gψψ = ∇ψ · ∇ψ. Thus, near the rational surface, cross-

field transport effects are important in determining the pressure profile, while far from the

rational surface the dominant parallel transport causes isobars to be closely aligned with

the magnetic flux surfaces. As previously noted, most analytic island calculations in 3-D

equilibria essentially assume WC → 0, and the solution to the pressure evolution equation

becomes B · ∇p = 0. In the following, a solution is developed that assumes WC to be finite

and W < WC .

Now, Eq.(37) is solved order by order for the small island case (W ≪ WC), with the

ordering parameter δ = W/Φ. We will find that a secondary ordering will be useful,

ξ = (δ2)(χ‖/χ⊥)1/2 ∼ W 2/W 2
C . Since ξ ≪ 1, crossfield transport will be important in

determining the pressure profile. The procedure is then to calculate the response order by

order in δ. For each order in δ, a secondary perturbative solution is sought which is order by

order in ξ. However, it will be seen that the crossfield transport effects will not enter into

the solution until higher order in δ. To lowest order, δ0, Eq.(37) becomes

∂

∂ζ

(
1

JB2

∂p0

∂ζ

)
= 0 (42)

where the superscript on pressure refers to order δ0. Solving Eq.(42) gives p0 = p0.

To next order, δ1, Eq.(37) becomes

∂

∂ζ

(
1

JB2

[
Ψ∗, p0

])
− ∂

∂ζ

(
1

JB2

∂Aα
∂ζ

∂p0

∂ψ

)
+

∂

∂ζ

(
1

JB2

∂p1

∂ζ

)
= 0 (43)

Integrating yields

∂

∂ζ

(
−Aα

∂p0

∂ψ
+ p1

)
= JB2f1(ψ, α) −

[
Ψ∗, p0

]
(44)

where f1(ψ, α) is an unknown function of integration. Taking toroidal averages and solving

gives

[
Ψ∗, p0

]
= JB2f1(ψ, α) (45)
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Substituting back in to Eq.(44) and solving for p1 gives

p1 = Ãα
∂p0

∂ψ
−
∫
dζ
[
Ψ̃∗, p0

]
+ p1 (46)

At order δ2, the effect of perpendicular heat conduction competes with equilibration

processes along field lines. This equation is given by

[
Ψ∗,

1

JB2

[
Ψ∗, p0

]
]

= −χ⊥
χ‖

∂

∂ψ

(
J gψψ

∂p0

∂ψ

)
(47)

If ξ ≫ 1 is assumed, we find p0 = p(Ψ∗), and the pressure is constant along the helical

island magnetic surfaces. However if ξ ≪ 1, we can make a subsequent expansion in ξ

writing the pressure as p0(ψ, α) = p0(ψs)+δp(ψ, α) = p0(ψs)+
∑∞

ν=0 pν(ψ) cos(να). Now we

write Ψ∗ =  ι′x2/2−∑
k

Aζkms,kns
(x) cos(ikmsα+ iφk), so that the physics of the full magnetic

spectrum are included. Using the small island ordering previously discussed, so that J gψψ

is approximately constant across the island region, to lowest order Eq.(47) reduces to:

d2p0

dx2
= 0 (48)

where x = ψ − ψs, the distance from the rational surface. Thus, to lowest order, δp =

p0−p0 = p′0x. To next lowest order, Eq.(47) reduces to the following ODE for the perturbed

pressure:

d2

dx2

∑

k

pk cos(kmsα+ φk) −
χ‖
χ⊥

1

JB2

1

J gψψ
 ι
′2x2

∑

k

pkk
2m2

s cos(kmsα+ φk) =

χ‖
χ⊥

1

JB2

1

J gψψ
 ι′p′0x

∑

k

Aζkms,kns
(x)k2m2

s cos(kmsα + φk) (49)

To lowest order in (W 2/W 2
C) this equation is linear in pk and driven by the resonant com-

ponent of the magnetic field. Eq.(49) is a form of the parabolic cylinder equation, and can

be rewritten, term by term in the index k

d2pk
dz2

− z2

4
pk =

z

WCk

p′0

 ι′
√

8
Aζkms,kns

(
z√
2
WCk

)
(50)
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where WCk =
(
χ⊥

χ‖
JB2J gψψ 1

 ι′2k2m2
s

) 1
4

is the critical island width for each harmonic and

z =
√

2x/WCk. Thus, a Green’s function solution can be constructed for this ODE so that

the pressure profile can be found

pk(z) =

∫ ∞

0

z

WCk

p′0

 ι′
√

8
Aζk

(
z√
2
WCk

)
G(z, ζ)dζ (51)

where G(z, ζ) is the Green’s function solution for the ODE, Eq.(50).

The solution for Eq.(50) can be calculated in two asymptotic limits, one where x≪ WCk

and one where x≫WCk,

p0 = p0(rs) + p′0(rs)x+
∑

k

pk(ψ, α)

where pk(ψ, α) =





−p′0
 ι′ x

C0

W 2
Ck

Aζkms,kns
(WCk) cos(kmsα + φk) x≪ WCk

− p′0
 ι′xAζkms,kns

(0) cos(kmsα + φk) x≫ WCk

(52)

Asymptotic analysis of the Green’s function, assuming various forms for A(x), indicates that

C0 ≈ 0.6.

Eq.(52) contains key information which describes how anisotropic heat transport influ-

ences the island dynamics. This expression for pressure will now be used in the solution of

the quasineutrality equation.

D. Quasineutrality and plasma current

In Sect.(III B), the singular nature of Eq.(9) was resolved by allowing for the formation

of a magnetic island. It was shown in Eq.(27) that the Pfirsh-Schlüter current is driven by

the resonant contribution of the Jacobian, and is explicitly not singular when a magnetic

island is present at the rational surface. To include finite anisotropic transport effects, we

now use the modifications to the pressure profile determined in the last section.
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The quasineutrality condition is given by

B · ∇Q = −B ×∇p · ∇(
1

B2
) (53)

where Q is the magnitude of the parallel current, J‖ = QB. In the island region, to lowest

order the quasineutrality condition takes the form:

∂Q0

∂ζ
= −∂p

0

∂ψ

[
( ι0I(ψ) + g(ψ))

∂

∂α

(
1

B2

)
− I(ψ)

∂

∂ζ

(
1

B2

)]0

(54)

It should be noted here that the Jacobian, J = ( ιI + g)/B2 has the following ordering

J = J + J̃ = J00(ψ) +
∑

k

Jkmskns
(ψ) cos(kmsα + φk) + J̃ (55)

Again we are interested in a single resonant surface defined by multiples of ms, ns, where

 ι0 = ns/ms at this surface. In the following, J00 and J̃ are O(1), and the second term

is O(δ). This ordering for the resonant component of the |B| spectrum is needed to be

consistent with the small island approximation that permeates the entire analysis. However,

as shown in Sect.(III B), it is the presence of the island-producing magnetic field (and not the

ordering used) which resolves the previously singular current. Furthermore, J is Taylor-

expanded about the rational surface. The Pfirsh-Schlüter current will be found below to

depend linearly on the resonant part of the Jacobian and inversely on the island producing

magnetic field amplitude.

Eq.(54) can now be integrated to yield the lowest order Pfirsch-Schlüter current:

Q0 = −∂p
0

∂ψ
J † + f(ψ, α) (56)

where f(ψ, α) is an unknown function of integration and J † is given by

J † =

∫
dζ
∂J

∂α
−
(
I

B2

)
(57)

=
∑

mn

′Jmne
imα+i(m ι0−n)ζ+iφk(g + (n/m)I)

( ι0 − n/m)( ιI + g)
(58)
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where the prime indicates the exclusion of resonant components where  ι0 = n/m.

At next lowest order, O(δ), the quasineutrality condition becomes:

∂Q1

∂ζ
+ [Ψ∗, Q0] +

∂Aα
∂ψ

∂Q0

∂ζ
− ∂Aα

∂ζ

∂Q0

∂ψ
= x

∂p0

∂ψ

[
−( ι0I

′ + g′)
∂

∂α

(
1

B2

)
+ I ′

∂

∂ζ

(
1

B2

)]

+
∂p0

∂ψ

[
−δB · eζ

∂

∂α

(
1

B2

)
+ δB · eα

∂

∂ζ

(
1

B2

)]
+
∂p1

∂ψ

[
−( ι0I + g)

∂

∂α

(
1

B2

)
+ I

∂

∂ζ

(
1

B2

)]

+
∂p0

∂α

[
B0 · eζ
B4

0

(
−∂B

2
0

∂ψ
+ 2

∂p0

∂ψ
− 2p′0

)
− B0 · eψ

∂

∂ζ

(
1

B2

)]

+
∂p0

∂ψ

[
−( ι0I + g)

∂

∂α

(
2δp

B4
0

+ x
∂

∂ψ

(
1

B2
0

))
+ I

∂

∂ζ

(
2δp

B4
0

+ x
∂

∂ψ

(
1

B2
0

))]

−
(
∂J

∂α

)(
∂p0

∂ψ

)
+

(
∂J

∂ζ

)(
∂p0

∂ψ

)
I

 ιI + g
(59)

where x = ψ − ψs results from Taylor expanding I and g about the rational surface, and

defining I = I(ψs), g = g(ψs), I
′ = I ′(ψs), g

′ = g′(ψs), eζ = ∂x/∂ζ = J∇ψ × ∇α, and

eα = ∂x/∂α = J∇ζ ×∇ψ.

Taking the toroidal average of Eq.(59) and simplifying produces

[Ψ∗, Q0] − [J †∂Ãζ
∂ψ

, p0] +
∂p0

∂α
K +

∂p0

∂ψ
δp

∂

∂α

(
J

B2
0

)
+

(
∂J

∂α

)(
∂p0

∂ψ

)
= 0 (60)

where K = J

B2
0

(
∂B2

0

∂ψ
+ 2p′0

)
+ β∗

∂
∂ζ

(
1
B2

0

)
. As will be shown in the following, the middle

three terms of Eq.(60) correspond to interchange physics. The last term corresponds to the

resonant part of the magnetic field spectrum and is the same as the RHS of Eq.(18). As

shown below, and confirming the results of Sect.(III B), the presence of the magnetic island

resolves the previously singular resonant Pfirsch-Schlüter current.

This equation will be solved order by order in ξ. However, information from Ampere’s

law is first required to determine the contribution of the 2nd term.
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E. Ampere’s law

To obtain the relationship between the parallel current and the magnetic perturbations,

Ampere’s law is used.

δJ = ∇×∇× δA (61)

To lowest order, the magnitude of the perturbed parallel current is then:

δQ = Q−Q0 ≈
B0 · δJ
B2

0

≈ − 1

G

∂2Aζ
∂ψ2

(62)

where G = JB2
0/g

ψψ. The toroidally averaged parallel Ampere’s law is then:

∂2Aζ
∂ψ2

= −δQG− δ̃QG̃ (63)

Subtracting this from the unaveraged equation gives:

∂2Ãζ
∂ψ2

= −δ̃QG− δQG̃− δ̃QG̃+ δ̃QG̃ (64)

Integrating once with respect to ψ yields

∂Ãζ
∂ψ

= J̃ †δpG+ J̃ †δpG̃− J̃ †G̃δp− G̃

G
δpJ̃ †G̃+

G̃

G

∂Aζ
∂ψ

(65)

where the boundary condition in ψ-space is far from the island. Note that equilibrium

quantities (G,J †) change slowly with respect to ψ and are considered constant for this

integration.

To use this form in the second term of Eq.(60), we multiply by J̃ † and take the toroidal

average

J̃ †∂Ãζ
∂ψ

= δp

(
J̃ †J̃ †G− 1

G

(
J̃ †G̃

)2
)

+
1

G
J̃ †G̃

∂Aζ
∂ψ

(66)

Now, this expression can be related to the functions E, F , and H of resistive interchange
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theory.18 For the present case,

E = −p
′

 ι′

(
V ′′

 ι′
G+GJ †

)

F = −p
′2

 ι′2

(
1

( ιI + g)
GJ 2 +GGJ †J † −

(
GJ †

)2
)

H =
p′

 ι′

(
GJ † −GJ †

)

where V ′′ = ∂
∂ψ
〈J 〉.

Substituting, Eq.(60) becomes

[Ψ∗, Q0] + [
 ι′

p′G

∂Aζ
∂ψ

H, p0] − [
 ι′2δp

p′2G
(E + F ), p0] − [

δp

p′
V ′′, p0] − [

 ι′δp

p′
J †, p0]

+ [δpJB−2, p0] +
∂p0

∂α
K +

∂p0

∂ψ
δp

∂

∂α

(
J

B2

)
+

(
∂J

∂α

)(
∂p0

∂ψ

)
= 0 (67)

Noting that the α-variation of E, F , and H is small and that the ψ-variation of equilib-

rium quantities is small compared with the ψ-variation of other quantities, Eq.(67) can be

simplified to

[Ψ∗, Q0] +

[
 ι′

p′G

∂Aζ
∂ψ

H −  ι′2δp

p′2G
(E + F ), p0

]
+

(
∂J

∂α

)(
∂p0

∂ψ

)
= 0 (68)

Before discussing the solution for Q0, we note that in the large-x limit we produce the

familiar asymptotic solution from tearing mode theory. Using Q0 from Eq.(62), and taking

the large-x limit of Eq.(68) produces the asymptotic expression, to O(W 2/x2), far from the

island,

∂2Aζ
∂x2

+
(E + F +H)

x2
Aζ = 0 (69)

This linear equation has two solutions of the form

Aζ = Al|x|αl + As|x|αs (70)
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where the large and small Mercier indices are defined as

αl,s =
1

2
∓
√
−DI (71)

The Mercier stability criterion, DI < 0 ensures that αl,s are real. If this criterion is violated,

ideal interchange instability will result.

Now, at this point the finite anisotropic heat transport effects from Sect. III C are included

in the expression for pressure. Subsequently, Eq.(68) is solved order by order in the small

parameter (W/WC)2.

F. Quasineutrality solution: order by order

To solve Eq.(68), the behavior of ∂Aζ/∂ψ must be understood. To make further progress,

an assertion will be made which is verified in Appendix C after the calculation is complete,

that

∂Aζ
∂ψ

= −αl  
ι′0
p′0
δp
[
1 + O(δ

√
−4DI )

]
(72)

where αl is the large Mercier index. Using the fact that O(δ
√
−4DI ) ≪ 1, Eq.(68) becomes

[Ψ∗, Q0] +

[(−Hαl −E − F

G

)
 ι′2

p′2
δp, p0

]
+

(
∂J

∂α

)(
∂p0

∂ψ

)
= 0 (73)

Eq.(73) will now be solved order by order in ǫ = (W/Wc)
2. At order ǫ0, p0(0) = p0 + p′0x,

where the superscript in parentheses refers to the order in ǫ, and the bare superscript refers

to the order in δ. At this order, δp(0) = p′0x; finite anisotropy pressure effects do not enter

into the calculation, and we will reproduce the result of Sect.(III B).

Ordering on the helical flux function, Ψ∗ =  ι′x2/2 −Aζ , must now be specified. Aζ(ψ) is

expanded in orders of ǫ, Aζ(ψ) =
∑

n ǫ
nAζn = Aζ0+ǫ1Aζ1+... The assertion made in Eq.(72)

implies that for order ǫ0, ∂Aζ/∂ψ ≈ 0. Therefore, at order ǫ0, the constant-ψ approximation
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is recovered. For simplicity, we now change coordinates from (ψ, α) to (Ψ∗, α). At lowest

order, Eq.(73) reduces to

∂Ψ∗(0)

∂ψ

∂(Q0)(0)

∂α
= −∂J

(0)

∂α

∂p0(0)

∂ψ
(74)

which is equivalent to Eq.(26).

As in Sect.(III B), expanding J as a Fourier series at the single resonant surface (multi-

ples of ms, ns), J (0) = J00(x)+
∑

ms,ns
Jmsns

eimsα+i(ms ι0+ns)ζ+iφk , and using the expansion

in Eq.(28) for Ψ∗, Eq.(74) can be solved to give

Q0(0) = −p′0
Jmsns

(0)

Aζ1
x+ Φ(Ψ∗) (75)

which reproduces the result of Eq.(27). The first term describes the resonant component of

the Pfirsch-Schlüter current and the last term is an undetermined function of Ψ∗ resulting

from the integration. Again, it is noted that in the presence of the magnetic island, the

resonant Pfirsch-Schlüter current is no longer singular.

At next order, ǫ1, Eq.(73) becomes

∂Ψ∗(1)

∂ψ

∂Q0(0)

∂α
+
∂Ψ∗(0)

∂ψ

∂Q0(1)

∂α
=

[(
Hαl + E + F

G

)
 ι′2

p′20
δp(1), p0(0)

]
− ∂J (0)

∂α

∂p0(1)

∂ψ
(76)

Anisotropic pressure effects enter at this order since δp(1) = p1 from Eq.(52). Eq.(76) can

be integrated to yield, to lowest order

Q0(1) =





(Hαl+E+F )

G
C0

∑
k

1
W 2

Ck

A(WCk) cos(kmsα + φk) x≪WCk

(Hαl + E + F )  ι′
2G

ln
(

 ι′x2

2

)
x≫WCk

(77)

The toroidally averaged parallel current is now known to within an unknown function

of integration, f(Ψ∗). That is, Q0 = Q0(0) + Q0(1) + f(Ψ∗) where the first two terms are

described by Eqs.(75) and (77). This unknown function can be found from Ohm’s law.
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G. Ohm’s law

Up to this point, we have used the ideal MHD equilibrium equations to produce an

expression for the current in the island region. To make further progress, we now apply a

modified Ohm’s law which includes resistive and neoclassical effects. The use of this modified

Ohm’s law provides a further constraint on the equilibrium, and produces a solution in the

vicinity of the rational surface. This solution will be subsequently asymptotically matched

to exterior region.

To solve for the unknown function of integration which arose in the last section, f(Ψ∗),

the projection of Ohm’s law along the magnetic field is used.

−B · ∂A
∂t

− B · ∇φ = ηQB2 − B · ∇ ·Π 1

ne
(78)

where φ is the electrostatic potential and η is the resistivity. Additionally, the viscous

stress tensor, Π, is added in order to account for electron neoclassical effects. Here, the

first two terms represent the B · E component, the third term is the contribution from the

parallel current, and the last term is the neoclassical contribution. Note that the resistivity,

η = η(T ), can be calculated using an expansion about the rational surface, T = T0(rs) +

T ′
0(rs)x + higher order terms. So, to lowest order, η = η0(rs). Also, the present work is

concerned only with the equilibrium island width, so the first term in Eq.(78) is neglected.

Taking the toroidal average of Eq.(78) gives

−[Ψ∗, φ] = η( ιI + g)Q− J B · ∇ · Π 1

ne
(79)

The first term in Eq.(79) is now annihilated by taking an average over the helical flux surface

at fixed Ψ∗,

〈f〉∗ =

∮
dα f

∂Ψ∗

∂x∮
dα 1

∂Ψ∗

∂x

(80)
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Applying this operation to Eq.(79) gives

η( ιI + g)〈Q〉∗ − 〈J B · ∇ · Π 1

ne
〉∗ = 0 (81)

We can write 〈J B · ∇ · Π 1
ne
〉∗ as27–29

〈J B · ∇ · Π 1

ne
〉∗ = (η − ηNC)( ιI + g)〈Q〉∗ + ηNC( ιI + g)〈QBC〉∗ (82)

where ηNC is the neoclassical resistivity and QBC is the bootstrap current.6 Combining

Eqs.(81) and (82), 〈Q〉∗ = 〈QBC〉∗. From an island physics standpoint, the important

property of QBC is its dependence on the pressure profile; with no island present QBC ∼

p′0. With the island, the pressure profile is perturbed and modifies the bootstrap current.

Accounting for the difference in the pressure profile, we can write

〈Q〉∗ = 〈QBC〉∗ (83)

= QBC

[
1 +

1

p′0
〈∂δp
∂ψ

〉∗
]

(84)

=  ι′DNC

[
1 +

1

p′0
〈∂δp
∂ψ

〉∗
]

(85)

Here, the stability of bootstrap current effects are defined by the sign of DNC , which is a

measure of the neoclassical bootstrap current effect.20 Tokamak-like bootstrap currents are

stabilizing to island growth when  ι′ > 0, since, for quasi-symmetric stellarators, DNC ∼ p′0/ ι
′.

Substituting for Q solves for the function of integration

f(Ψ∗) = 〈QBC〉∗ − 〈Q0(0)〉∗ − 〈Q0(1)〉∗ (86)

Taking the appropriate averages, the parallel current is, for x≪WCk

Q = −p
′
0Jmsns

(0)(x− 〈x〉∗)
Aζ1

+
(Hαl + E + F )

G

(
∑

k

C0

W 2
Ck

A(WCk) cos(kmsα + φk) −
〈
∑

k

C0

W 2
Ck

A(WCk) cos(kmsα + φk)

〉

∗

)

+
〈
QBC

〉
∗ (87)

27



and for x≫ WCk

Q = −p
′
0Jmsns

(0)(x− 〈x〉∗)
Aζ1

+
(Hαl + E + F )

G

 ι′

2

(
ln

(
 ι′x2

2

)
−
〈

ln

(
 ι′x2

2

)〉

∗

)

+ 〈QBC〉∗ (88)

Introducing the ψ-variation of the perturbed pressure into these expressions results in a

convenient form for the parallel current. For x≪WC

Q = −p
′
0Jmsns

(0)(x− 〈x〉∗)
Aζ1

+
−αsDR

αs −H

 ι′

p′0G

(
∂δp

∂ψ
−
〈
∂δp

∂ψ

〉

∗

)
+ 〈QBC〉∗ (89)

and for x≫ WC

Q = −p
′
0Jmsns

(0)(x− 〈x〉∗)
Aζ1

+
DR

αs −H

 ι′

p′0G

(
∂δp

∂ψ
−
〈
∂δp

∂ψ

〉

∗

)
+ 〈QBC〉∗ (90)

Note that there is a sign difference when comparing the second terms on the right hand sides

of Eqs.(89) and (90). This results from the fact that the perturbed pressure, δp has positive

slope for W ≪WC and has negative slope for W ≫ WC .

The results in Eqs.(89) and (90) make it possible to proceed with asymptotic matching;

the solution interior to the island region will be matched with the solution exterior to the

island region.

IV. ASYMPTOTIC MATCHING AND EQUILIBRIUM ISLAND WIDTH

The equilibrium island width is found by asymptotically matching the inner region solu-

tion with the exterior region solution, given by Eq.(70). Formally, these exterior solutions

can be expanded in the resonant harmonics as Aζ =
∑

k Ak(ψ) cos(kmsα). The key informa-

tion for matching is contained in the ratios of the resonant harmonics of the exterior solution

on either side of the narrow island region. The matching parameter is18

∆′ =
Ak,s+
Ak,l+

− Ak,s−
Ak,l−

(91)
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Employing the assumption that the solution is dominated by a single harmonic, Aζ ≈

Aζ(ψ) cos(msα), results in the use of a single matching parameter, ∆′ at the rational surface.

This asymptotic matching procedure utilizes ∆′ to relate the helically resonant currents in

the layer to the external data. In a sense, this procedure resolves the δ-function-like currents

described in Eq.(9) by allowing for island formation as noted in the discussion following

Eq.(75). The singular Pfirsch-Schlüter current contribution is also resolved by the allowance

of an island. Finally, under normal operation, most stellarators are not expected to be

tearing unstable. Hence, ∆′ < 0 is typically satisfied.

To make further progress with the asymptotic matching, it will prove to be convenient

to work with the function T rather than Aζ

∂T

∂x
=
∂Aζ
∂ψ

+ αl
 ι′s
p′0
δp (92)

See Appendix C for a discussion of the relation between T and Aζ . Using Eq.(C2) from

Appendix C, the asymptotic matching between the interior and exterior regions can now be

carried out

∆∗Aζ = ∆′Al
√

−4DI

∣∣∣∣
W

2

∣∣∣∣
−αl

=

∫ ∞

−∞
dx

∮
dα

2π
cos(msα)

∂2T

∂ψ2
(93)

where DI is the Mercier stability criterion, and α-integration is carried out with a cosine to

pick out the correct harmonic. It can be shown that

∂2T

∂x2
= −δQG+

DR

αs −H

 ι′

p′0

∂δp

∂ψ
(94)

where DR = E + F + H2 from resistive interchange theory,18 and ∂2Aζ/∂ψ
2 is found from

the toroidally averaged Ampere’s law, Eq.(63), where Q is defined by Eqs.(89) and (90).

Carrying out the integration in Eq.(93) yields an equation for equilibrium island width,

∆∗ +
1

2

(
1 + αs
αs −H

)
DR

(
W

WC

)
C0

W
+ 0.81Dnc

(
W 2

W 2
C

)
C0

W
+
CPS
W 2

= 0 (95)
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where ∆∗ = ∆′ |W/2|−2αl
√
−4DI and CPS describes the contribution from Pfirsch-Schlüter

currents. Recall from the calculations given in Eq.(56) and Eq.(75) that both the non-

resonant and resonant components of the Pfirsch-Schlüter current in the island region are

unaffected by finite parallel transport physics. Hence the contribution of the last term to

the equilibrium island width does not depend on WC .

The contribution to equilibrium island width from the Pfirsch-Schlüter current can in

principle be determined by solving for the perturbed magnetic potential in Ampere’s law,

∇×∇× δA = δJ (96)

where here δA and δJ arise from the perturbed magnetic field. Within the current fully

three-dimensional geometry, currents (and vector potentials) are produced with every helic-

ity. Formally δA will take the form

δA =
∑

mn

[Aθ(ψ,m, n)∇θ + Aζ(ψ,m, n)∇ζ ]ei(mθ−nζ) (97)

where the gauge Aψ = 0 is chosen. Since every helicity is represented in δA, CPS will have

both resonant and non-resonant components, CPS = CPS−RES + CPS−NR. However, for

the current geometry, to obtain CPS through solution of Ampere’s law is not tractable. To

understand the scaling of the resonant coefficients of Eq.(97), one can make the simplify-

ing assumption of nearly circular flux surfaces and solve Ampere’s law by using a Green’s

function integration, as Cary and Kotschenreuther did.4 This simplification decouples the

helicities, and yields to lowest order

CPS−RES ≃ β

m2| ι′|
R2

0

a2

(
Jmsns

J00

)
(98)

To determine the non-resonant coupling coefficients, details of the three-dimensional geom-
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etry are required to properly invert the ∇× (∇×) operator. As such we write

CPS ≃ β

m2| ι′|
R2

0

a2

∑

mn

Cmn
Jmn

J00

(99)

where Cmn denotes the order unity (at most) coupling coefficients.

So, incorporating the above into the Pfirsch-Schlüter term, and substituting C0 ≈ 0.6 the

island equation becomes

∆∗ + 0.3

(
1 + αs
αs −H

)
DR

W

(
W

WC

)
+ 0.5

Dnc

W

(
W 2

W 2
C

)

+
1

W 2

β

m2| ι′|
R2

0

a2

∑

mn

Cmn
Jmn

J00

= 0 (100)

When W ≪ WC , the neoclassical contribution is negligible. In this limit the dominant

finite-β drive for the island comes from the Pfirsch-Schlüter contribution. In this case, the

island width is approximated by

W 2 =
CPS

−∆∗ − 0.3
(

1+αs

αs−H

)
DR

WC

(101)

assuming ∆∗ is negative. Also, note that for W ≪ WC , the resistive interchange term

produces a finite contribution, whereas the neoclassical term asymptotes to zero.

Now, the above calculations are applicable for the case where perpendicular heat transfer

is not negligible relative to parallel heat transfer (W ≪ WC). Conversely, when islands are

large, W ≫ WC , the parallel heat transfer equilibrates temperature on the island perimeter,

flattening the temperature profile within the island. Previous island width calculations are

characterized by the W ≫ WC case, where these studies have essentially assumed that

WC → 0. For this large-island case, the corresponding island width equation is

∆∗ + k0
DR

(αs −H)W
+ k1

Dnc

W
+

1

W 2

β

m2| ι′|
R2

0

a2

∑

mn

Cmn
Jmn

J00

= 0 (102)

where k0 and k1 are constants of order unity. It is instructive to compare Eqs.(100) and (102),

the equilibrium island width equations in the small- and large-island limits, respectively.
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First, note that the resistive interchange term is attenuated by a factor ofW/WC in the small-

island case compared with the large-island case. Also, the neoclassical term is attenuated

by a factor of W 2/W 2
C in the small-island case compared with the large-island case. That

is, resistive interchange and neoclassical physics have smaller effects when islands are small.

However, the destabilizing Pfirsch-Schlüter currents have the same effect whether islands are

large or small.

V. DISCUSSION

In this work, we extend the theory of nonlinear pressure-induced magnetic islands to

include cases where finite parallel transport effects are important. This work was completed

for general three dimensional non-axisymmetric magnetic geometry, with no limits on aspect

ratio or β. An expression for equilibrium magnetic island size is derived for the case where

finite parallel transport effects are important; that is, for the cases where there is competi-

tion between crossfield transport across the island, and parallel transport which maps the

perimeter of the island. The result of the current work, Eq.(100), applies to magnetic islands

which are sufficiently small. As discussed above, prior workers have generated island equa-

tions for the case where κ‖/κ⊥ ∼ ∞; that is, the large-island case where parallel transport

dominates and temperature equilibrates on the island perimeter, flattening the temperature

profile within the island. The current work can be bridged to this prior work via a Padé

approximation to produce an equation for equilibrium island width which spans both small

and large island regimes.

∆∗ +
k0DR

(αs −H)

1

W + k0
0.3(1+αs)

WC

+ k1Dnc
W

W 2 + k1
0.5
W 2
C

+
CPS

 ι′W 2
= 0 (103)
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where k0 and k1 are positive dimensionless coefficients20 and CPS represents both the reso-

nant and non-resonant contribution of the Pfirsch-Schlüter current as discussed in the last

section.

Eq.(103) provides insight into how anisotropic transport effects influence island dynam-

ics, as small island cases are compared with large island cases. First, note that for small

islands, island growth driven by resistive interchange physics is attenuated by a factor of

W/WC compared with the same large island case. Next, observe that for small islands,

the neoclassical drive for island growth is attenuated even more, by a factor of W 2/W 2
C ,

when compared with the large island case. This can be explained by the fact that, in the

small-island case, the pressure profile is relatively unaffected by the presence of the magnetic

island. As discussed above, island growth caused by resistive interchange effects and neo-

classical effects depends on localized island currents caused by self-consistent deformation

of the pressure profile in the vicinity of the island. Since the pressure profile is minimally

affected by the small magnetic island, resistive interchange physics and neoclassical physics

therefore play a small role in determining island width.

Equally important is the fact that the inclusion of finite parallel transport effects does

not change island growth caused by Pfirsch-Schlüter currents, whether the island is small

or large. This finding is consistent with the fact that Pfirsch-Schlüter currents depend very

weakly on pressure equilibration physics. Instead, these currents depend on the magnetic

spectrum, which is determined by the global plasma properties.

The results of this work depend upon the closure used to describe the pressure response.

Whereas standard approaches employ a strict resistive model, we use a model that explic-

itly allows for anisotropic transport as the determining physics in describing the pressure

response. An important result is that even in the limit of large (but not infinite) parallel
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heat conduction, perpendicular transport can affect pressure-induced island physics in stel-

larators. This finding has implications for extended MHD simulation codes which have a

variety of pressure and heat transport schemes that can be employed. The choice of closure

scheme may affect the simulation results, since proper understanding of island dynamics is

critical to predicting quality of confinement.

Furthermore, in practice, the scale size WC is very small (fractions of a centimeter) for

high temperature stellarators, owing to the vast differences in scale between perpendicular

and parallel transport. This scale disparity is difficult to realize in full MHD numerical sim-

ulations. In particular, previous simulations using HINT did not produce islands caused by

local currents. However, for these simulations, WC was a significant fraction of the radius.

Conversely, taking B ·∇p = 0 overestimates the local current effects. These findings indicate

that efforts to design reactors which minimize island size via stabilizing neoclassical or in-

terchange physics may not be successful for small islands. Conversely, success in controlling

growth of small islands is more likely in reactors which attempt to control island size by

limiting the drives from Pfirsch-Schlüter effects.

This work assumes that transport is purely diffusive in nature, as evidenced by Eq.(37),

with local transport coefficients specifying the transport. In more general treatments, inte-

gral models for parallel transport may be operative.30,31 These effects are not considered in

the present calculation.

Finally, we note that in addition to the finite pressure effects considered here, plasma flow

effects can also influence island formation in stellarators.32,33 In particular, flow effects are

suspected of healing large islands present in the vacuum configuration of the Large Helical

Device.34,35

While this work is concerned with the formation of a single island chain, a practical issue
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in stellarator operation is the presence or lack thereof of stochastic regions which result from

overlapping magnetic islands. While the present calculation cannot be easily extended to

this case, the current work does point out the need to properly account for self-consistent

anisotropic heat conduction.
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Appendix A: Calculation of the pressure profile at X- and O-points.

For the case where islands are small, the pressure profile in the island is not flattened

as in the large island case. The pressure profile remains largely topologically toroidal, with

minor deformation in the vicinity of the island. As a result the radial thermal flux across

topologically toroidal surfaces remains constant,

∇ · Γ = 0 (A1)

Solution of this equation can be realized with a diffusion equation for pressure. If the source

for plasma pressure is assumed to be far from the island region, the diffusion equation for

pressure can be written

∇ · Γ = 0 (A2)

−∇ ·D∇p = 0 (A3)

The solution of this equation far from the island can be matched with the solution at

x = ψ − ψs = 0 to yield the pressure gradient at the X- and O-points.
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Far from the island, isobars are aligned with the topologically toroidal flux surfaces, so

we write dp/dψ|∞ ≡ p′∞. Therefore, in the region far from the island, the radial thermal

flux is

〈Γ · ∇ψ〉 = −〈D∇p · ∇ψ〉 (A4)

= −
〈
Dp′∞|∇ψ|2

〉
(A5)

= −Deffp
′
∞ (A6)

For the region in the vicinity of the X- and O-points, the radial thermal flux can be

decomposed based on the physical drive.36 In this region we are interested in the drive from

the large Pfirsch-Schlüter currents. Since finite parallel transport effects can be ignored to

lowest order, in the vicinity of the island p(ψs) ≈ p0(ψs) + p′0(ψs)x, and we have

〈Γ · ∇ψ〉 = ΓRPS + ΓNRPS + ... (A7)

= −
(
DR
PS +DNR

PS +Dother

)
p′0 (A8)

Here, the diffusion coefficient for pressure is decomposed into parts associated with resonant

and non-resonant Pfirsch-Schlüter currents and all other physical drives. Also, the geometric

factor |∇ψ|2 has been absorbed into the diffusion coefficients in the last expression, as was

done in Eq.(A6).

For simplicity, in the rest of the derivation we will employ expressions for radial particle

fluxes. For the present stellarator-like magnetic configuration, in Boozer coordinates, it can

be shown that the radial particle flux driven by Pfirsch-Schlüter currents is

ΓPS = −nη‖p′0
〈
Q2B2

p′20

〉
(A9)

where n is the number density, η‖ is the Spitzer resistivity, and Q is the parallel current,

which has both resonant and non-resonant components.
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We now define the resonant and non-resonant Pfirsch-Schlüter particle fluxes

ΓRPS ≡ −nη‖p′0
(
g + ns/msI

 ιI + g

)2〈J 2
msns

( ι′x)2
B2

〉
(A10)

ΓNRPS ≡ −nη‖p′0

〈(
∑

mn

′Jmne
imα+i(m ι0−n)ζ(g + n/mI)

( ι0 − n/m)( ιI + g)

)2

B2

〉
(A11)

where ΓPS = ΓRPS + ΓNRPS , and in Eq.(A11) the prime on the sum denotes a sum where

n/m 6=  ι0. Additionally, the resonant parallel current, Q = −p′0Jmsns
/ ι′x in Eq.(A10) is

obtained from the external solution to [Ψ∗, Q] = −[p,J ]. Eq.(A9) can now be written

ΓPS = ΓNRPS

(
1 +

ΓRPS
ΓNRPS

)
(A12)

= ΓNRPS


1 +

〈
J 2

msns
(g + ns/msI)2

( ι′x)2
(∑′

mn
J eimα+i(m ι0−n)ζ(g+n/mI)

 ι0−n/m

)2

〉
 (A13)

= ΓNRPS

(
1 +

ǫ2

x2

)
(A14)

The expressions for the flux far from the island and in the vicinity of the island can now be

matched, giving an expression for the pressure gradient near the island. Since ΓNRPS = DNR
PS p

′
0,

p′0
p′∞

=
Dtot(

DNR
PS

(
1 + ǫ2

x2

)
+Dother

) (A15)

where Dtot is the total diffusion coefficient for all physical drives of radial flux. Eq.(A15)

shows that, to maintain constant radial flux near the X- and O-points, the transport co-

efficients change, causing the pressure gradient to vanish in a very small region of order

ǫ
√
DNR
PS /Dtot ≪ 1. In practice, this is a very small radial extent and is assumed small for

the bulk of this calculation.

Appendix B: Comparison with linear theory

In this appendix, we present an outline of the corresponding linear theory associated

with the nonlinear calculation discussed in the main part of this paper. As mentioned in
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Sect.(III C), a key difference between the calculation which is the subject of this paper and

the linear calculation of Ref. (18) is the closure relation used for pressure effects. Here,

a linear calculation is outlined which includes the pressure closure from Eq.(52). In the

following, we assume the length scale WC is large compared to the linear resistive layer scale

length.

The layer equations result from the quasineutrality equation and Ohm’s law. Keeping

the pressure term and the inertia term in the linear quasineutrality equation, ∇·J = 0, one

obtains

(B0 · ∇)Q̃ + (B̃ · ∇)Q0 + ∇ ·
(

B0 × ρ∂ev

∂t

B2

)
+ ∇ ·

(
B0 ×∇p̃

B2

)
= 0 (B1)

Following standard linear tearing mode theory, a linear expression can be derived using the

x≪WC expression for p̃1 in Eq.(52). Eq.(B1) can be written

γ̂
∂2φ̂

∂X2
= −X∂2Âζ

∂X2
− Âζλ

′ −X
αsDR

αs −H

C0

Ŵ 2
C

Âζ (B2)

where x = ψ − ψs, X =  ι′x, φ̂ = −φim ι′τA, γ̂ = γτA, Âζ = Aζ  ι
′, ŴC = WC  ι′, and

λ′ = µ0(dQ0/dψ)G/ ι′2, and the Alfv́en time is given by

τA =

√
µ0ρ

m

(
J gψψ

B2

JB2

gψψ

)1/2

(B3)

The last term in Eq.(B2) describes the interchange contributions and differs from the con-

ventional resistive MHD prediction due to the different pressure closure.

Next, the parallel projection of Ohm’s law is treated,

−B0 · ∇φ̃− B0 ·
∂Ãζ
∂t

= ηB · J̃ (B4)

which can be written

γ̂Âζ = Xφ̂+
1

S

d2Âζ
dX2

(B5)
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using the same normalizations defined above with the Lundqusit number is given by

S =
µ0

η ι′2τA

G

JB2
(B6)

A dispersion relation is now derived for the linear layer equations, Eqs.(B2) and (B5), by

matching the inner solution to the outer solution of these equations. The result is

∆∗ +
1 + αs

2

DR

αs −H

C0

WC
= 2πγ5/4S3/4 Γ(3/4)

Γ(1/4)

[
1 + O

(
LW
WC

)]
(B7)

where LW is the layer width and small terms of order LW/WC are neglected in the dispersion

relation. Note that the interchange contribution in the nonlinear theory of Eq.(95) is exactly

the same as its corresponding contribution in Eq.(B7).

Appendix C: Verification of Eq.(72)

Following the procedure of Ref. (20) , we assume that ∆′ is an order unity quantity, and

introduce the function T ,

∂T

∂x
=
∂Aζ
∂ψ

+ αl
 ι′s
p′0
δp (C1)

Far away from the magnetic island (at large x), B · ∇p = 0; it is easily seen that

δp ≈ −p′0Aζ/ ι′0/x. Using this fact and Eq.(91),

lim
x→∞

∂T

∂x

∣∣+x
−x = lim

x→∞

[
As±(αs − αl)|x|−αl

]+x
−x

= (αs − αl)

∣∣∣∣
W

2

∣∣∣∣
−αl ∑

k

∆′
kAk,l cos(kmsα) (C2)

where continuity is satisfied by Al+ = Al−. Using ∂Aζ/∂x ∼ αlAζ/x we find that

∂T
∂x

∂Aζ

∂x

∼ ∆′αs − αl
αl

|x|
√
−4DI ∼ δ

√
−4DI ≪ 1 (C3)

which implies that

∂Aζ
∂x

= −αl
 ι′0
p′0
δp+ O

(
δ
√
−4DI

)
(C4)

which is used in Eq.(72).
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