Spheromak Energy Confinement in Sustained and Transient Conditions

Carl Sovinec and Giovanni Cone

University of Wisconsin-Madison

and

Bruce Cohen

Lawrence Livermore National Laboratory

31st IEEE International Conference on Plasma Science
June 28-July 1, 2004, Baltimore, Maryland
Outline

• Introduction
 – Spheromak background
 – Need for simulation
• SSPX modeling
 – Parameters of the computations
 – Comparison with SSPX results
 – Four stages of simulated evolution
 – Energy transport
• Discussion and Conclusions
The most successful spheromak formation scheme uses electrodes impregnated with vacuum poloidal flux.

- Slow formation was a major conceptual breakthrough [Jarboe, et al., PRL 51, 39 (1983)].

- Most theoretical descriptions have been based on relaxation arguments [Taylor, PRL 33, 1139 (1974); Jarboe, PPCF 36, 945 (1994)].
 - No information on fluctuations
 - Sustainment described by global helicity balance and cascades

- During drive, $T_e < 50$ eV, but during decay or partial drive, $T_e >> 100$ eV has been recorded.
While relaxation theory provides insight, numerical computation is required to solve the time-dependent nonlinear equations that describe macroscopic evolution.

• Simulations of generic spheromaks at 0-β addressed MHD activity underlying formation and sustainment [Finn, PRL 85, 4538 (2000), Sovinec, Phys. Plasmas 8, 475 (2001)].
 – Flux amplification results from $n=1$ MHD activity.
 – Average parallel current is flattened by a dynamo effect.
 – Chaotic scattering of field-lines occurs during sustainment.
 – Closed flux surfaces form during decay.
 – Confinement was not addressed directly.
Recent computations evolve temperature and number density, in addition to magnetic field and plasma flow velocity, to investigate energy confinement properties.

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B} - \eta \mathbf{J}) \quad \text{Faraday’s/Ohm’s laws}
\]

\[
\mu_0 \mathbf{J} = \nabla \times \mathbf{B} \quad \text{low-\(\omega\) Ampere’s law}
\]

\[
\rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = \mathbf{J} \times \mathbf{B} - \nabla p + \nabla \cdot \nu \rho \nabla \mathbf{V} \quad \text{flow evolution}
\]

\[
\frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{V}) = \nabla \cdot D \nabla n \quad \text{particle continuity}
\]

\[
\frac{n}{\gamma - 1} \left(\frac{\partial T}{\partial t} + \mathbf{V} \cdot \nabla T \right) = -\frac{p}{2} \nabla \cdot \mathbf{V} + \nabla \cdot n \left[\chi_\parallel \mathbf{b} \mathbf{b} + \chi_\perp (\mathbf{I} - \mathbf{b} \mathbf{b}) \right] \cdot \nabla T + \frac{\eta J^2}{2} \quad \text{(single) temperature evolution}
\]

\[
\mathbf{b} \equiv \mathbf{B}/|\mathbf{B}| \quad \text{local magnetic direction vector}
\]

- Braginskii transport coefficients are used for \(\chi_\parallel\) (electron), \(\chi_\perp\) (ion), and \(\eta\).
- Heating is Ohmic.
- The NIMROD code [http://nimrodteam.org] evolves the system in 3D.
 - High-order finite elements help resolve anisotropies [JCP 195, 355 (2004)].
Simulation of SSPX 4620-4644 Shot Series

INPUT (Collisional coefficients are based on Hydrogen and Z=1):

- \(n = 5 \times 10^{19} \text{ m}^{-3} \)
- \(\eta(T) = \frac{411 \left(\frac{1 \text{ eV}}{T} \right)^{3/2}}{\mu_0} \text{ m}^2/\text{s} \)
- \(\chi_\parallel(T) = 387 \left(\frac{T}{1 \text{ eV}} \right)^{5/2} \text{ m}^2/\text{s} \)
- \(\chi_\perp = 0.50 \left(\frac{1 \text{ eV}}{T} \right)^{1/2} \left(\frac{1 \text{ T}}{B} \right)^2 \text{ m}^2/\text{s} \)
- \(T_{\text{wall}} = 0.1 \text{ eV} \)
- \(\psi_{\text{vacuum}} \) specified
- \(I_{\text{inj}}(t) \) via boundary conditions on \(B \)
- Heat sink controls boundary layer
- \(\nu = D = 2000 \text{ m}^2/\text{s} \)

OUTPUT: Everything else

Initial (vacuum) poloidal flux distribution and the NIMROD mesh of bicubic finite elements representing SSPX (upside down).

- \(0 \leq n \leq 2 \) and \(0 \leq n \leq 5 \) Fourier comps. in \(\phi \)
The simulated injector current is programmed to approximate the series of SSPX discharges reported in [McLean, et al., PRL 88, 125004-1 (2002)].

A strongly driven phase is followed by decay and then a second, partial drive. [SSPX Data courtesy of H. S. McLean.]

In the early driven phase, the applied potential reaches a few kV. During partial drive, the potential is ~100 V.

- There are four stages in the evolution: **1-pinch, 2-driven, 3-decay, 4-partial drive**.
- The peak instantaneous power input reaches ~1 GW in the driven stage.
Toroidal current and magnetic energy evolution from the simulations are similar to results found by CORSICA fits to laboratory observations [Hooper, et al., NF 39, 863 (1999)] during the partial-drive stage.

I_{tor} resulting from the series of NIMROD simulations is compared with I_{tor} from CORSICA equilibrium fits of SSPX data.

Decay of magnetic energy is slowed by the partial drive.

- During partial drive in the simulation, the injector circuit provides 14 MW of power and the decay of magnetic energy provides an additional 1.4 MW.
Both simulation and experiment show a quiescent phase when partial drive is applied after a brief period of decay.

Relative poloidal magnetic field fluctuations at the outboard mid-plane position.

- Although conditions are not sustained, partial drive forces fluctuations to smaller amplitude and postpones the emergence of the $n=2$ mode.
- A second partial-drive computation includes all $n \leq 5$ and produces fluctuations at larger n-values that reduce T late in time.

Observed and computed temperatures are highest during the quiescent phase.
Four Stages of Evolution

An animation of the numerical results helps distinguish characteristics of the different stages.

- Left side shows axisymmetric parallel current density.
- Right side shows axisymmetric temperature and poloidal flux function.
- Bottom plot shows advancing time and injected current.
Four Stages of Simulated Evolution: 1-Symmetric Pinch ($t<0.08$ ms)

- Injected toroidal flux pushes plasma and poloidal flux into the flux-conserver region.

With temperature-dependent resistivity, current is carried by a thin layer until the symmetric distribution becomes MHD unstable.

The vacuum poloidal flux is stretched and compressed, but there is no flux amplification at this stage. The Poincaré plot shows some dynamically formed closed-flux surfaces.
Four Stages of Simulated Evolution: 2-Driven (0.08 ≤ t ≤ 0.12 ms)

- Similar to 0–β simulation results, saturation of the $n=1$ mode leads to redistribution of parallel current through the MHD dynamo effect.

The symmetric component of parallel current density is positive throughout most of the flux conserver.

Regions of positive power density transfer energy from the symmetric magnetic field to fluctuations; negative power density drives symmetric current.

- Dynamo electric field was measured in SPHEX, but $n>1$ was thought to represent separate activity [al-Karkhy, et al., PRL 70, 1814 (1993)].
Four Stages of Simulated Evolution: 2-Driven ($0.08 \leq t \leq 0.12$ ms)

- Also similar to $0-\beta$ simulation results, saturation of the $n=1$ mode (including reconnection) converts toroidal magnetic flux into poloidal magnetic flux.

The symmetric component of poloidal magnetic flux has a new minimum value, indicating ~200% flux amplification. However, magnetic field-lines show chaotic scattering.

With chaotic magnetic field-lines, parallel conduction transports heat to the walls, and T is essentially uniform with a maximum of ~35 eV.

- Analytical estimate is ~30 eV. [Hooper, J. Nucl. Materials 278, 104 (2000).]
Four Stages of Simulated Evolution: 3-Decay ($0.12 \leq t \leq 0.5$ ms)

- With the drive off, temperature on the outer field-lines decreases rapidly, enhancing resistive reconnection and the formation of flux surfaces.

Magnetic fluctuations decay faster than the amplified poloidal flux, producing large closed-flux surfaces.

Energy confinement improves while Ohmic heating continues through magnetic energy decay. At 0.5 ms, the temperature at the magnetic axis reaches 76 eV.
Thermal transport changes character from driven (top row) to decaying conditions (bottom row).

 conductive $<q_{\parallel} B_{pol}>$
 convective $<q_{\perp pol}>
 convective $<2nTV_{pol}>$

Note the exponential scale for the magnitudes of the three heat vectors.
Four Stages of Simulated Evolution: 4-Partial Drive ($t \geq 0.5$ ms)

- With partial drive, the flux surfaces persist longer, and the peak temperature is higher.

Topologically, the partial drive stage is similar to decay.

- The second drive delays the onset of resonant $n=2$ activity, and it heats plasma surrounding the flux surfaces.

- The partial-drive simulation with better toroidal resolution ($0 \leq n \leq 5$) produces more resonant MHD activity and a slightly lower maximum temperature.

The ‘shot’-maximum temperature of 98.8 eV occurs at $t=1.0$ ms.
Safety factor profiles suggest that the improvement from partial drive results from avoiding the $q=0.5$ surface [~Woodruff and McLean, recent].

Safety factor profiles at $t=1$ ms from the partial drive simulation and an extended free decay simulation.

Comparison of magnetic fluctuation energies for free decay and partial drive.

- By suppressing the $n=2$ mode, simulations with partial drive achieve twice the internal energy at 1 ms.

- Other factors may contribute—further investigation is needed.
Driven vs. Partial-Drive Dynamo Activity

- Although the partial-drive stage has half of the injected current as the driven stage, the dynamo power density is two orders of magnitude smaller. [Note the contour-level scales in the following plots.]

Dynamo power density at $t=0.12$ ms.

- The ratio of electrical conductivities at the respective temperatures is less than 10.
- At 50 eV the symmetric current would require ~ 8 ms to decay resistively.
- Partial-drive phase with closed flux surfaces is not representative of sustainment.
Discussion

• An interplay of inductive effects and temperature-dependent transport coefficients produces the low-fluctuation, high-confinement states.
 – The \(n=1 \) mode of the open-field current channel decays rapidly when the drive is removed—the open-field plasma cools, and the pinch current subsides.
 – Low-resistivity plasma within the hot flux surfaces retains toroidal current associated with the \(n=1 \)-generated poloidal flux.
 – The influence of the MHD activity on the magnetic topology during drive and decay are consistent with earlier 0-\(\beta \) simulation results (Finn, et al., PRL 85, 4538, 2002 and Sovinec, et al., PoP 8, 475, 2001).

• The realistic parameters and collisional temperature dependencies make the MHD results quantitatively consistent with SSPX results:
 – Temperature evolution
 – Magnetic fluctuations of \(\sim 1 \% \) during partial drive
 – Magnetic energy decay during partial drive

• The resonant fluctuations during partial should be analyzed with respect to their impact on confinement and not as a mechanism for current drive.

• Simulation results indicate that current-profile relaxation (flux amplification) and self-organization (formation of closed-flux surfaces) are distinct processes.
Conclusions

- Evolving the complete system with temperature-dependent transport coefficients allows us to assess confinement quality during different stages of spheromak operation.
- Transients play a crucial role; thus, modeling injector current programming is necessary for detailed comparison of theory and experiment.
- Relating the 0-β simulation results to the recent results and from the comparison of the experimental observations with the simulations, we see that only the initial phase of the standard two-stage SSPX operation has the characteristics of full sustainment.
- The success of partial drive provides optimism for tailoring pulsed spheromak operation.
Acknowledgments

- Harry McLean: SSPX data
- SSPX experimental group and LLNL theory group: many helpful discussions
- Ken Fowler: relevance of collisional closures
- John Finn, Diego del-Castillo-Negrete: collaboration on 0-β MHD studies
- NIMROD Team: code development collaboration