A Comparison of MHD Activity and Nonlinear Dynamics in RFPs and Electrostatically Sustained Spheromaks

Carl Sovinec
Los Alamos National Laboratory

in collaboration with

John Finn, LANL
Diego del-Castillo-Negrete, ORNL

presented at

Confinement and Stability of Alternative Fusion Concepts

Varenna, Italy

October 12-16, 2000
MAJOR FINDINGS

• In the past, dynamo in RFPs and relaxation in spheromaks have been compared loosely.
• With the correct geometric perspective, MHD simulations show that the analogy holds extremely well for specific characteristics:
 • Free energy source
 • Linear instability
 • Feedback on symmetric fields
• An unrealistically small R/a RFP simulation illustrates where quantitative differences arise.
 • Spectra
 • Fluctuation levels
• The analogy does not extend to magnetic topologies, however, due to the electrode-penetrating flux in the spheromak.
The comparisons are made with numerical solutions of the zero-\(\beta\) resistive MHD equations, which are appropriate for studying current driven activity in both devices.

\[
\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} = \frac{1}{\rho} \mathbf{J} \times \mathbf{B} + \nabla \cdot (\nu \nabla \mathbf{V})
\]

\[
\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}
\]

- Walls are ideal, except for allowing the necessary sources of magnetic flux to drive the discharges.
- Only considering sustained conditions.
- \(S\) is \(10^3\)-\(10^4\), except where noted.
- Spheromak and new RFP simulations have been performed with the **NIMROD** code, http://nimrodteam.org.
Flux-core spheromaks and gun-driven spheromaks have the same topology, but the RFP comparison is more easily visualized with the flux-core configuration.
When comparing RFPs and spheromaks, the direction of the applied electric field has primary importance.

- Spheromak z-direction :: RFP ϕ-direction
Current density is strongest in the direction of the applied electric field.

- Pinching is perpendicular to this direction.
- This establishes the current gradient and source of free energy for breaking azimuthal symmetry.

Line-tied Pinch

R/a=2 Periodic Pinch

\[\lambda = \frac{\mu_0 a J_\parallel}{B} \]
In both configurations, the free energy most easily excites an azimuthal mode number 1 instability.

- "m" number 1 for RFPs
- "n" number 1 for spheromaks

Line-tied "n"=1 mode

Periodic (1,4) mode
• It is well known that saturation of the $m=1$ modes brings about **field reversal** in RFPs.

• Saturation of the analogous current driven instability leads to **flux amplification** in spheromaks.

n=0 Poloidal Flux Contours for a Spheromak

Unstable Pinch

Saturated State

Spheromak flux amplification is a more extreme manifestation of the same saturation mechanism.
A spheromak-like simulation with periodic ends bridges the gap between the spheromak and the RFP.

- $R/a=1/2\pi$
- $\Theta=\mu_0aI/2\Phi=6.5$

The resulting flux amplification is 170% for both.
- Line tying does little in the final state.

- From RFP studies, we know that the spectrum narrows as R/a is decreased.1
- Larger normalized current drives larger fluctuations in spheromaks (~10% vs ~1% in RFPs).

As S is increased in RFP simulations, the MHD activity becomes progressively more intermittent.\footref{footnote:1}

As S is increased in RFP simulations, the MHD activity becomes progressively more intermittent.2

In spheromak simulations, the final state is steady at low values of $S (=1000)$. When S is increased (5000), the sustained states are nonsteady, often showing limit cycle behavior.
Topology of Magnetic Field Lines

With a conducting wall, and in the absence of field errors, a single magnetic trajectory ergodically samples the entire volume of a standard RFP.

- The trajectory is *stochastic*.

530 intercepts of a constant-ϕ plane over a single integration path of approximately 25,000 R.

- Toroidal geometry RFP simulation, $R/a=2$.
- $\Theta = 1.8$, $F = -0.1$.
Open field lines in spheromaks may be given unique labels.

- Trajectories are described by *chaotic scattering*.

![Graphs showing field lines at different Z levels](image-url)
Because individual lines may be identified in a spheromak, we can find the distribution of lengths.

- An exponential distribution, observed in typical cases, is characteristic of hyperbolic scattering.
Plotting field-line length as a function of the starting position for each trajectory shows the fractal mixing of lines of different length.

- Thus, there is no region of exclusively long lines.
RFP configurations achieve closed flux surfaces in single helicity and quasi-single helicity states. Spheromak simulations show a similar state with large closed flux surfaces just above the pinch stability threshold.

- Flux surfaces and central current have helical distortions.
- Entrained poloidal field is very weak, and the safety factor at the magnetic axis is of order 10.

In steady state, the current distribution and magnetic topology are related through the parallel component of Ohm's law.

When the only parallel electric field is ηJ, the difference in electrostatic potential between two points along a field line is

$$\delta \chi (L) = -\int_0^L E \cdot B \frac{dL'}{B} = -\int_0^L \frac{\eta}{\mu_0} B dL'$$

where the path of integration follows the field line trajectory.

On closed flux surfaces,

$$\langle f \rangle_\Psi = \frac{\oint f dL/B}{\oint dL/B}$$

$$\langle \eta \lambda B^2 \rangle_\Psi = -\frac{\oint dL\hat{\mathbf{b}} \cdot \nabla \chi}{\oint dL/B} = 0$$

Therefore:

- Within a surface, λ changes sign, *or*
- In the limit of $\mathbf{J} \times \mathbf{B} = \mathbf{0}$, $\lambda=0$.
- Flux surfaces are analogous to stellarator flux surfaces.
For open field topologies,

Integrating from one electrode to the other with the approximately uniform resistivity,

\[\delta \chi(L) = V \approx -\frac{\eta}{\mu_0} \langle \lambda B \rangle_B L \]

where \(\langle f \rangle_B \equiv \frac{1}{L} \int_0^L f dL' \)

Therefore:

- The ensemble average of \(\langle \lambda B \rangle_B \) is proportional to the ensemble average of \(L^{-1} \equiv 1/L^* \).

Also,

- Average parallel current tends to approach the first eigenvalue of \(\nabla \times \mathbf{B} = \mu \mathbf{B} \) with homogeneous boundary conditions as the applied voltage becomes large.\(^5\)

As voltage is increased and the toroidally averaged B approaches the first eigenfunction, the average field-line length increases through spreading of the distribution.
CONCLUSIONS

• The direction of the applied electric field is the most important consideration for making the RFP-spheromak analogy.

• Though spheromak sustainment has previously received less investigation than RFP dynamo, we can draw from the MHD studies of RFPs.
 • The dominant $n=1$ spheromak perturbation is like the core-resonant RFP modes.
 • The small effective aspect ratio narrows the spheromak spectrum.
 • Flux amplification is a more dramatic realization of field reversal.
 • Larger magnetic fluctuations result from larger normalized currents.

• Open field lines change the nature of the magnetic topology.
 • Fractal mixing means that long field lines are always close to short field lines.
 • RFPs with field errors likely have short parallel connections from the core to the wall, also.