SuperLU Implementation and Timings

CRS (with implementation help from Xiaoye Li), 8/6/03

• SuperLU is a sparse direct solver package that is part of the ACTS collection—source can be downloaded.
 • Three varieties: serial (Seq_SLU), distributed memory parallel (SLU_DIST), and shared memory.
 • Has minimum degree reordering but can use external ordering routines.
 • Does not assume symmetry.
 • Suggested by Dinesh Kaushik of the PETSc group.
• NIMROD implementation can link to either Seq_SLU or SLU_DIST.
 • Iter_cg_* modules now have routines to convert rblock matrix format to compressed column format (or LAPACK banded format).
 • Can be done for triangles.
 • New makefile system allows user to select the desired solver library.
 • “Link” libraries in the “externals” directory have C routines that interface SuperLU.
Timing Information

- With sufficient memory, serial linear computations can be 100 times faster than with our preconditioned CG.
 - Systems are ill-conditioned (direct is better but some iteration may still be required to achieve accuracy).
 - Our systems are small due to high-order elements.
 - A bicubic 32×32 linear computation runs 500 time-steps in about 12 minutes on our Pentium IV desktop.
Parallel Timing Information

- Fixed-problem size parallel scaling is not as good as PCG, but the starting point is so much better that SLU seldom loses.

- 32×32 biquartic.
- Run on seaborg.
SLU_D is also effective for nonlinear problems.

- 32×32 biquartic D3D computation, all factors recomputed ~1 in 8 steps.
- Solve time includes 3D solves with SLU_D as the preconditioner.
Next Steps

- A fortran utility for direct nonsymmetric solves with SuperLU.
- Try a sparse solver designed for Hermitian systems.
 - But not SPOOLES—at least not yet (Esmond Ng).