F. E. Basis Function

Continuity Discussion

Carl Sovinee - CEMM mtg 4/5/04

Example: 1D - cubics

\(C^0 \)

(Lagrange or spectral)

\(C^1 \)

(Hermite)

- \(C^0 \) has \(\sim 3 \) DOF/element
- \(C^1 \) has \(\sim 2 \) DOF/element
Is one representation (C^0 or C^1) better than the other?

→ No obvious answer
→ Likely depends on the application

+ Advantages of C^1

1) Second derivatives have finite 'energy' (square integrable),
 • reduced MHD + viscosity
 • Hall s.i. operator without auxiliary field

\[\text{rhs} = \nabla \times \left(\frac{\mathbf{a}}{\mu_0} \left(\nabla \times \mathbf{b} \right) \times \mathbf{b} \right) - \nabla \times \frac{\mathbf{a}}{\mu_0} \left(\nabla \times \mathbf{b} \right) \times \mathbf{b} \]

2) Continuity of derivatives seems desirable qualitatively.
Disadvantages of C^1

1) Possibly slower convergence if the solution isn't smooth.
2) Mappings are more restricted.

Why?

1) \Rightarrow FE approach stems from variational / Galerkin formulation and the choice of solution space. Physical model \Rightarrow diff. eqns. \Rightarrow strong form

\[Lu = f \]

- Mapping from space containing u
- to space containing f
- space containing u has higher continuity.
Strong form (continued)

- If \(\frac{\partial^2 f}{\partial x^2} = 0 \) and

\(L \) is a second (fourth) - order diff op., then \(L \) is a mapping

from \(H^2 \to H^0 \)

(here, superscript indicates degree of deriv. with finite energy) \([H^s]\)

- Can restrict to a space satisfying b.c.s to order \(s-1 \)
 only \(\to H^s \).
- Weak form
 \[(L u, v) = (f, v)\] for all \(v\) in \(\mathcal{H}^s_B\)?
 - Int by parts
 \[a(u, v) = (f, v)\]
 - Energies of derivatives of order \(m\) appear (only)
 \[s = 2m \text{ or } 2m-1\]

 → Enlarge Space to \(\mathcal{H}^{m+1}_B\)?
 - Yes if minimum / stationary 'point' (function) is the same.

\[\frac{du}{dx}\]

[Diagram]

True soln.

Func. in \(\mathcal{H}^1\)

Others in \(\mathcal{H}^2\) (and \(\mathcal{H}\))
FE approximation uses a family of subspaces in $\mathcal{V}_h \rightarrow$ chooses 'best' approximation in each space (parameterized by h,p).

\rightarrow Resolve solution by progressing to subspaces that contain more of \mathcal{V}_h

\rightarrow C^1 vs. C^0 is a question of whether it helps to restrict in the process of converging.

[Previous page argues converged solution is the ..]
• If the converged solution has C^1 continuity, how can C^0 do better for the F.E.A.?

Generic Example

- For this mesh spacing C^1_h solution would overshoot.
2) Mappings are more restricted with C^1.

- In F.E., the physically motivated operator becomes a norm of the error, which is used to choose the best soln in S_h.
- In this norm, the F.E. soln is better than interpolate functions in the same space.

\rightarrow Makes the connection to Taylor approximation wrt ind. vars. of PDE (not logical or element coordinates).

\rightarrow With the exception of special cases, (reduced quintic on triangles with linear maps), C^r requires a C^1 map.

$A(5,m), Z(3,m)$
\(c^0 \) map:

- Lines of constant \(s \)

\(c^1 \) map

→ Map itself requires a global solve of \(\mathbb{R}(s, \theta), \mathbb{Z}(s, \theta) \)

→ Not used for structural shell elements.